4 bộ đề thi đại học chuyên Vinh
Số trang: 10
Loại file: pdf
Dung lượng: 766.23 KB
Lượt xem: 13
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
4 bộ đề thi đại học chuyên Vinh nhằm giúp các em học sinh có tài liệu ôn tập, luyện tập nhằm nắm vững được những kiến thức, kĩ năng cơ bản, đồng thời vận dụng kiến thức để giải các bài tập toán học một cách thuận lợi và tự kiểm tra đánh giá kết quả học tập của mình.
Nội dung trích xuất từ tài liệu:
4 bộ đề thi đại học chuyên VinhTRƯ NG ðAI H C VINH ®Ò thi thö ®¹i häc n¨m häc 2009-2010 Kh i THPT Chuyên MÔN: TOÁN; Th i gian làm bài: 180 phút ------------------------- -----------------------------------------------A. PH N CHUNG CHO T T C THÍ SINH (7,0 ñi m)Câu I. (2,0 ñi m) Cho hàm s y = x 3 − 3(m + 1) x 2 + 9 x − m , v i m là tham s th c. 1. Kh o sát s bi n thiên và v ñ th c a hàm s ñã cho ng v i m = 1 . 2. Xác ñ nh m ñ hàm s ñã cho ñ t c c tr t i x1 , x 2 sao cho x1 − x 2 ≤ 2 .Câu II. (2,0 ñi m) 1 sin 2 x π 1. Gi i phương trình: cot x + = 2 sin( x + ) . 2 sin x + cos x 2 2. Gi i phương trình: 2 log 5 (3 x − 1) + 1 = log 3 5 (2 x + 1) . 5 x2 +1Câu III. (1,0 ñi m) Tính tích phân I = ∫ dx . 1 x 3x + 1Câu IV. (1,0 ñi m) Cho hình lăng tr tam giác ñ u ABC. A B C có AB = 1, CC = m ( m > 0).Tìm m bi t r ng góc gi a hai ñư ng th ng AB và BC b ng 60 0 .Câu V. (1,0 ñi m) Cho các s th c không âm x, y, z tho mãn x 2 + y 2 + z 2 = 3 . Tìm giá tr l n nh t c a bi u th c 5 A = xy + yz + zx + . x+ y+zB. PH N RIÊNG (3,0 ñi m) Thí sinh ch ñư c làm m t trong hai ph n (ph n a, ho c b).a. Theo chương trình Chu n:Câu VIa. (2,0 ñi m) 1. Trong m t ph ng v i h to ñ Oxy , cho tam giác ABC có A( 4; 6) , phương trình các ñư ng th ng ch a ñư ng cao và trung tuy n k t ñ nh C l n lư t là 2 x − y + 13 = 0 và 6 x − 13 y + 29 = 0 . Vi t phương trình ñư ng tròn ngo i ti p tam giác ABC . 2. Trong không gian v i h to ñ Oxyz , cho hình vuông MNPQ có M (5; 3; − 1), P ( 2; 3; − 4) . Tìm to ñ ñ nh Q bi t r ng ñ nh N n m trong m t ph ng (γ ) : x + y − z − 6 = 0.Câu VIIa. (1,0 ñi m) Cho t p E = {0,1, 2, 3, 4, 5, 6}. T các ch s c a t p E l p ñư c bao nhiêu s t nhiên ch n g m 4 ch s ñôi m t khác nhau?b. Theo chương trình Nâng cao:Câu VIb. (2,0 ñi m) 1. Trong m t ph ng v i h to ñ Oxy , xét elíp ( E ) ñi qua ñi m M ( −2; − 3) và có phương trình m t ñư ng chu n là x + 8 = 0. Vi t phương trình chính t c c a ( E ). 2. Trong không gian v i h to ñ Oxyz , cho các ñi m A(1; 0; 0), B (0;1; 0), C (0; 3; 2) và m t ph ng (α ) : x + 2 y + 2 = 0. Tìm to ñ c a ñi m M bi t r ng M cách ñ u các ñi m A, B, C và m t ph ng (α ).Câu VIIb. (1,0 ñi m) Khai tri n và rút g n bi u th c 1 − x + 2(1 − x) 2 + ... + n(1 − x) n thu ñư c ña th c P ( x) = a 0 + a1 x + ... + a n x n . Tính h s a8 bi t r ng n là s nguyên dương tho mãn 1 7 1 2 + 3 = . Cn Cn n ------------------------------------ H t -------------------------------------Tr−êng ð¹i häc vinh. ®¸p ¸n ®Ò kh¶o s¸t chÊt l−îng líp 12 LÇn 1 - 2009Khèi THPT chuyªn M«n To¸n, khèi A ðÁP ÁN ð THI TH L N 1 – NĂM 2009 Câu ðáp án ði m I 1. (1,25 ñi m) (2,0 Víi m = 1 ta cã y = x 3 − 6 x 2 + 9 x − 1 .ñi m) * TËp x¸c ®Þnh: D = R * Sù biÕn thiªn • ChiÒu biÕn thiªn: y = 3 x 2 − 12 x + 9 = 3( x 2 − 4 x + 3) x > 3 0,5 Ta cã y > 0 ⇔ , y < 0 ⇔ 1 < x < 3 . x < 1 Do ®ã: + H m sè ®ång biÕn trªn mçi kho¶ng (−∞,1) v (3, + ∞) . + Hàm sè nghÞch biÕn trªn kho¶ng (1, 3). • Cùc trÞ: H m sè ®¹t cùc ®¹i t¹i x = 1 v yCD = y (1) = 3 ; ®¹t cùc tiÓu t¹i x = 3 v yCT = y (3) = −1 . 0,25 • Giíi h¹n: lim y = −∞; lim y = +∞ . x → −∞ x → +∞ • B¶ng biÕn thiªn: x −∞ 1 3 +∞ y’ + 0 − 0 + +∞ 3 0,25 y −∞ -1 * §å thÞ: y §å thÞ c¾t trôc tung t¹i ®iÓm (0, − 1) . 3 2 0,25 1 x O 1 2 3 4 -1 2. (0,75 ®iÓm) Ta cã y = 3 x 2 − 6(m + 1) x + 9. +) H m sè ®¹t cùc ®¹i, cùc tiÓu t¹i x1 , x 2 ⇔ ph−¬ng tr×nh y = 0 cã hai nghiÖm pb l x1 , x 2 ...
Nội dung trích xuất từ tài liệu:
4 bộ đề thi đại học chuyên VinhTRƯ NG ðAI H C VINH ®Ò thi thö ®¹i häc n¨m häc 2009-2010 Kh i THPT Chuyên MÔN: TOÁN; Th i gian làm bài: 180 phút ------------------------- -----------------------------------------------A. PH N CHUNG CHO T T C THÍ SINH (7,0 ñi m)Câu I. (2,0 ñi m) Cho hàm s y = x 3 − 3(m + 1) x 2 + 9 x − m , v i m là tham s th c. 1. Kh o sát s bi n thiên và v ñ th c a hàm s ñã cho ng v i m = 1 . 2. Xác ñ nh m ñ hàm s ñã cho ñ t c c tr t i x1 , x 2 sao cho x1 − x 2 ≤ 2 .Câu II. (2,0 ñi m) 1 sin 2 x π 1. Gi i phương trình: cot x + = 2 sin( x + ) . 2 sin x + cos x 2 2. Gi i phương trình: 2 log 5 (3 x − 1) + 1 = log 3 5 (2 x + 1) . 5 x2 +1Câu III. (1,0 ñi m) Tính tích phân I = ∫ dx . 1 x 3x + 1Câu IV. (1,0 ñi m) Cho hình lăng tr tam giác ñ u ABC. A B C có AB = 1, CC = m ( m > 0).Tìm m bi t r ng góc gi a hai ñư ng th ng AB và BC b ng 60 0 .Câu V. (1,0 ñi m) Cho các s th c không âm x, y, z tho mãn x 2 + y 2 + z 2 = 3 . Tìm giá tr l n nh t c a bi u th c 5 A = xy + yz + zx + . x+ y+zB. PH N RIÊNG (3,0 ñi m) Thí sinh ch ñư c làm m t trong hai ph n (ph n a, ho c b).a. Theo chương trình Chu n:Câu VIa. (2,0 ñi m) 1. Trong m t ph ng v i h to ñ Oxy , cho tam giác ABC có A( 4; 6) , phương trình các ñư ng th ng ch a ñư ng cao và trung tuy n k t ñ nh C l n lư t là 2 x − y + 13 = 0 và 6 x − 13 y + 29 = 0 . Vi t phương trình ñư ng tròn ngo i ti p tam giác ABC . 2. Trong không gian v i h to ñ Oxyz , cho hình vuông MNPQ có M (5; 3; − 1), P ( 2; 3; − 4) . Tìm to ñ ñ nh Q bi t r ng ñ nh N n m trong m t ph ng (γ ) : x + y − z − 6 = 0.Câu VIIa. (1,0 ñi m) Cho t p E = {0,1, 2, 3, 4, 5, 6}. T các ch s c a t p E l p ñư c bao nhiêu s t nhiên ch n g m 4 ch s ñôi m t khác nhau?b. Theo chương trình Nâng cao:Câu VIb. (2,0 ñi m) 1. Trong m t ph ng v i h to ñ Oxy , xét elíp ( E ) ñi qua ñi m M ( −2; − 3) và có phương trình m t ñư ng chu n là x + 8 = 0. Vi t phương trình chính t c c a ( E ). 2. Trong không gian v i h to ñ Oxyz , cho các ñi m A(1; 0; 0), B (0;1; 0), C (0; 3; 2) và m t ph ng (α ) : x + 2 y + 2 = 0. Tìm to ñ c a ñi m M bi t r ng M cách ñ u các ñi m A, B, C và m t ph ng (α ).Câu VIIb. (1,0 ñi m) Khai tri n và rút g n bi u th c 1 − x + 2(1 − x) 2 + ... + n(1 − x) n thu ñư c ña th c P ( x) = a 0 + a1 x + ... + a n x n . Tính h s a8 bi t r ng n là s nguyên dương tho mãn 1 7 1 2 + 3 = . Cn Cn n ------------------------------------ H t -------------------------------------Tr−êng ð¹i häc vinh. ®¸p ¸n ®Ò kh¶o s¸t chÊt l−îng líp 12 LÇn 1 - 2009Khèi THPT chuyªn M«n To¸n, khèi A ðÁP ÁN ð THI TH L N 1 – NĂM 2009 Câu ðáp án ði m I 1. (1,25 ñi m) (2,0 Víi m = 1 ta cã y = x 3 − 6 x 2 + 9 x − 1 .ñi m) * TËp x¸c ®Þnh: D = R * Sù biÕn thiªn • ChiÒu biÕn thiªn: y = 3 x 2 − 12 x + 9 = 3( x 2 − 4 x + 3) x > 3 0,5 Ta cã y > 0 ⇔ , y < 0 ⇔ 1 < x < 3 . x < 1 Do ®ã: + H m sè ®ång biÕn trªn mçi kho¶ng (−∞,1) v (3, + ∞) . + Hàm sè nghÞch biÕn trªn kho¶ng (1, 3). • Cùc trÞ: H m sè ®¹t cùc ®¹i t¹i x = 1 v yCD = y (1) = 3 ; ®¹t cùc tiÓu t¹i x = 3 v yCT = y (3) = −1 . 0,25 • Giíi h¹n: lim y = −∞; lim y = +∞ . x → −∞ x → +∞ • B¶ng biÕn thiªn: x −∞ 1 3 +∞ y’ + 0 − 0 + +∞ 3 0,25 y −∞ -1 * §å thÞ: y §å thÞ c¾t trôc tung t¹i ®iÓm (0, − 1) . 3 2 0,25 1 x O 1 2 3 4 -1 2. (0,75 ®iÓm) Ta cã y = 3 x 2 − 6(m + 1) x + 9. +) H m sè ®¹t cùc ®¹i, cùc tiÓu t¹i x1 , x 2 ⇔ ph−¬ng tr×nh y = 0 cã hai nghiÖm pb l x1 , x 2 ...
Tìm kiếm theo từ khóa liên quan:
bộ đề thi đại học 2010 đề thi Olympic toán 2010 đề thi dại học FPT hàm số phân thức lượng giác tích phân bài tập luyện thi toánTài liệu có liên quan:
-
700 Câu trắc nghiệm Tích phân có đáp án
90 trang 82 0 0 -
Giáo trình Lý thuyết độ đo và tích phân: Phần 1 - Lương Hà
64 trang 78 0 0 -
24 trang 57 0 0
-
Ôn thi THPT Quốc gia môn Toán (Tập 3)
335 trang 50 0 0 -
Tài liệu môn Toán lớp 12 học kì 2 - Trường THCS&THPT Mỹ Thuận
61 trang 49 0 0 -
Tài liệu luyện thi THPT Quốc gia môn Toán 12
379 trang 45 0 0 -
Toàn cảnh Nguyên hàm - Tích phân - Ứng dụng tích phân
22 trang 43 0 0 -
Chuyên đề Nguyên hàm và Tích phân - Ôn thi tốt nghiệp THPT môn Toán
94 trang 38 0 0 -
135 Câu trắc nghiệm Lượng giác có đáp án
13 trang 34 0 0 -
Hệ thống kiến thức và phương pháp giải Toán THPT
68 trang 34 0 0