Biến phức định lý và áp dụng P1
Số trang: 50
Loại file: pdf
Dung lượng: 293.33 KB
Lượt xem: 16
Lượt tải: 0
Xem trước 5 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Biến phức định lý và áp dụng P1 Biến phức là hàm số mà miền xác định và miền giá trị đều nằm trong tập hợp các số phức. Việc cho HBP w = f(z) tương đương với việc cho hai hàm biến thực u = u(x, y) và v = v(x,y), trong đó w = u + iv, z = x + iy. Hàm u gọi là phần thực của hàm w, kí hiệu Re w; hàm v gọi là phần ảo của w, kí hiệu Im w. Lớp HBP quan trọng nhất là lớp...
Nội dung trích xuất từ tài liệu:
Biến phức định lý và áp dụng P1 Đ I H C QU C GIA HÀ N ITRƯ NG Đ I H C KHOA H C T NHIÊN =============================Nguy n Văn M u (Ch biên), Tr n Nam Dũng Đinh Công Hư ng, Nguy n Đăng Ph t T Duy Phư ng, Nguy n Th y Thanh BI N PH C Đ NH LÝ VÀ ÁP D NG HÀ N I 2009 Đ I H C QU C GIA HÀ N ITRƯ NG Đ I H C KHOA H C T NHIÊN =============================Nguy n Văn M u (Ch biên), Tr n Nam Dũng Đinh Công Hư ng, Nguy n Đăng Ph t T Duy Phư ng, Nguy n Th y Thanh BI N PH C Đ NH LÝ VÀ ÁP D NG HÀ N I 2009M cl cL i nói đ u 81 S ph c, bi n ph c l ch s và các d ng bi u di n 11 1.1 L ch s hình thành khái ni m s ph c . . . . . . . . . . . . . . 11 1.2 Các d ng bi u di n s ph c . . . . . . . . . . . . . . . . . . . . 17 1.2.1 Bi u di n s ph c dư i d ng c p . . . . . . . . . . . . . 17 1.2.2 Bi u di n s ph c dư i d ng đ i s . . . . . . . . . . . . 21 1.2.3 Bi u di n hình h c c a s ph c . . . . . . . . . . . . . . 22 1.2.4 Bi u di n s ph c nh ma tr n . . . . . . . . . . . . . . 24 1.2.5 D ng lư ng giác và d ng mũ c a s ph c . . . . . . . . . 25 1.2.6 Bi u di n các s ph c trên m t c u Riemann . . . . . . . 27 1.2.7 Kho ng cách trên C . . . . . . . . . . . . . . . . . . . . 30 1.3 Bài t p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332 S ph c và bi n ph c trong lư ng giác 36 2.1 Tính toán và bi u di n m t s bi u th c . . . . . . . . . . . . . 36 2.2 Tính giá tr c a m t s bi u th c lư ng giác . . . . . . . . . . . 43 2.3 D ng ph c c a b t đ ng th c Cauchy . . . . . . . . . . . . . . . 51 2.4 T ng và tích sinh b i các đa th c lư ng giác . . . . . . . . . . . 54 2.4.1 Ch ng minh công th c lư ng giác . . . . . . . . . . . . . 56 2.4.2 T ng và tích các phân th c c a bi u th c lư ng giác . . 64 4M CL C 5 2.5 B t đ ng th c lư ng giác . . . . . . . . . . . . . . . . . . . . . . 68 2.6 Đ c trưng hàm c a hàm s lư ng giác . . . . . . . . . . . . . . 76 2.7 Bài t p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 833 M ts ng d ng c a s ph c trong đ i s 88 3.1 Phương trình và h phương trình đ i s . . . . . . . . . . . . . . 88 3.1.1 Phương trình b c hai . . . . . . . . . . . . . . . . . . . . 88 3.1.2 Phương trình b c ba . . . . . . . . . . . . . . . . . . . . 92 3.1.3 Phương trình b c b n . . . . . . . . . . . . . . . . . . . 98 3.1.4 Phương trình b c cao . . . . . . . . . . . . . . . . . . . . 103 3.1.5 Các bài toán v phương trình, h phương trình đ i s . . 109 3.2 Các bài toán v đa th c . . . . . . . . . . . . . . . . . . . . . . 111 3.2.1 Phương trình hàm trong đa th c . . . . . . . . . . . . . 111 3.2.2 Các bài toán v đa th c b t kh quy . . . . . . . . . . . 120 3.2.3 Bài toán v s chia h t c a đa th c . . . . . . . . . . . . 135 3.2.4 Quy t c d u Descartes trong ng d ng . . . . . . . . . . 136 3.3 Phương trình hàm v i bi n đ i phân tuy n tính . . . . . . . . . 144 3.3.1 M t s tính ch t c a hàm phân tuy n tính . . . . . . . . 145 3.3.2 Đ ng c u phân tuy n tính. . . . . . . . . . . . . . . . . . 146 3.3.3 Phương trình hàm sinh b i hàm phân tuy n tính . . . . 160 3.4 Bài t p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1634 S ph c trong các bài toán s h c và t h p 166 4.1 Gi i phương trình Diophant . . . . . . . . . . . . . . . . . . . . 166 4.2 Rút g n m t s t ng t h p . . . . . . . . . . . . . . . . . . . . 167 4.3 Các bài toán đ m . . . . . . . . . . . . . . . . . . . . . . . . . . 169 4.4 S ph c nguyên và ng d ng trong lí thuy t s . . . . . . . . . . 172 4.4.1 Tính ch t chia h t trong t p các s ph c nguyên . . . . 1746 M CL C 4.4.2 S nguyên t Gauss . . . . . . . . . . . . . . . . . . . . . 177 4.4.3 M t s áp d ng s ph c nguyên . . . . . . . . . . . . . . 185 4.5 Bài t p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1895 M ts ng d ng c a s ph c trong hình h c 192 5.1 Mô t m t s k t qu c a hình h c ph ng b ng ngôn ng s ph c193 5.1.1 Góc gi a hai đư ng th ng . . . . . . . . . . . . . . . . . 194 5.1.2 Tích vô hư ...
Nội dung trích xuất từ tài liệu:
Biến phức định lý và áp dụng P1 Đ I H C QU C GIA HÀ N ITRƯ NG Đ I H C KHOA H C T NHIÊN =============================Nguy n Văn M u (Ch biên), Tr n Nam Dũng Đinh Công Hư ng, Nguy n Đăng Ph t T Duy Phư ng, Nguy n Th y Thanh BI N PH C Đ NH LÝ VÀ ÁP D NG HÀ N I 2009 Đ I H C QU C GIA HÀ N ITRƯ NG Đ I H C KHOA H C T NHIÊN =============================Nguy n Văn M u (Ch biên), Tr n Nam Dũng Đinh Công Hư ng, Nguy n Đăng Ph t T Duy Phư ng, Nguy n Th y Thanh BI N PH C Đ NH LÝ VÀ ÁP D NG HÀ N I 2009M cl cL i nói đ u 81 S ph c, bi n ph c l ch s và các d ng bi u di n 11 1.1 L ch s hình thành khái ni m s ph c . . . . . . . . . . . . . . 11 1.2 Các d ng bi u di n s ph c . . . . . . . . . . . . . . . . . . . . 17 1.2.1 Bi u di n s ph c dư i d ng c p . . . . . . . . . . . . . 17 1.2.2 Bi u di n s ph c dư i d ng đ i s . . . . . . . . . . . . 21 1.2.3 Bi u di n hình h c c a s ph c . . . . . . . . . . . . . . 22 1.2.4 Bi u di n s ph c nh ma tr n . . . . . . . . . . . . . . 24 1.2.5 D ng lư ng giác và d ng mũ c a s ph c . . . . . . . . . 25 1.2.6 Bi u di n các s ph c trên m t c u Riemann . . . . . . . 27 1.2.7 Kho ng cách trên C . . . . . . . . . . . . . . . . . . . . 30 1.3 Bài t p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332 S ph c và bi n ph c trong lư ng giác 36 2.1 Tính toán và bi u di n m t s bi u th c . . . . . . . . . . . . . 36 2.2 Tính giá tr c a m t s bi u th c lư ng giác . . . . . . . . . . . 43 2.3 D ng ph c c a b t đ ng th c Cauchy . . . . . . . . . . . . . . . 51 2.4 T ng và tích sinh b i các đa th c lư ng giác . . . . . . . . . . . 54 2.4.1 Ch ng minh công th c lư ng giác . . . . . . . . . . . . . 56 2.4.2 T ng và tích các phân th c c a bi u th c lư ng giác . . 64 4M CL C 5 2.5 B t đ ng th c lư ng giác . . . . . . . . . . . . . . . . . . . . . . 68 2.6 Đ c trưng hàm c a hàm s lư ng giác . . . . . . . . . . . . . . 76 2.7 Bài t p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 833 M ts ng d ng c a s ph c trong đ i s 88 3.1 Phương trình và h phương trình đ i s . . . . . . . . . . . . . . 88 3.1.1 Phương trình b c hai . . . . . . . . . . . . . . . . . . . . 88 3.1.2 Phương trình b c ba . . . . . . . . . . . . . . . . . . . . 92 3.1.3 Phương trình b c b n . . . . . . . . . . . . . . . . . . . 98 3.1.4 Phương trình b c cao . . . . . . . . . . . . . . . . . . . . 103 3.1.5 Các bài toán v phương trình, h phương trình đ i s . . 109 3.2 Các bài toán v đa th c . . . . . . . . . . . . . . . . . . . . . . 111 3.2.1 Phương trình hàm trong đa th c . . . . . . . . . . . . . 111 3.2.2 Các bài toán v đa th c b t kh quy . . . . . . . . . . . 120 3.2.3 Bài toán v s chia h t c a đa th c . . . . . . . . . . . . 135 3.2.4 Quy t c d u Descartes trong ng d ng . . . . . . . . . . 136 3.3 Phương trình hàm v i bi n đ i phân tuy n tính . . . . . . . . . 144 3.3.1 M t s tính ch t c a hàm phân tuy n tính . . . . . . . . 145 3.3.2 Đ ng c u phân tuy n tính. . . . . . . . . . . . . . . . . . 146 3.3.3 Phương trình hàm sinh b i hàm phân tuy n tính . . . . 160 3.4 Bài t p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1634 S ph c trong các bài toán s h c và t h p 166 4.1 Gi i phương trình Diophant . . . . . . . . . . . . . . . . . . . . 166 4.2 Rút g n m t s t ng t h p . . . . . . . . . . . . . . . . . . . . 167 4.3 Các bài toán đ m . . . . . . . . . . . . . . . . . . . . . . . . . . 169 4.4 S ph c nguyên và ng d ng trong lí thuy t s . . . . . . . . . . 172 4.4.1 Tính ch t chia h t trong t p các s ph c nguyên . . . . 1746 M CL C 4.4.2 S nguyên t Gauss . . . . . . . . . . . . . . . . . . . . . 177 4.4.3 M t s áp d ng s ph c nguyên . . . . . . . . . . . . . . 185 4.5 Bài t p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1895 M ts ng d ng c a s ph c trong hình h c 192 5.1 Mô t m t s k t qu c a hình h c ph ng b ng ngôn ng s ph c193 5.1.1 Góc gi a hai đư ng th ng . . . . . . . . . . . . . . . . . 194 5.1.2 Tích vô hư ...
Tìm kiếm theo từ khóa liên quan:
BĐT chọn lọc giải toán BĐT phương trình thuần nhất hàm biến phức định lý và áp dụng phương trình hàmTài liệu có liên quan:
-
Kỷ yếu Kỳ thi Olympic Toán học sinh viên - học sinh lần thứ 29 (Năm 2023)
145 trang 90 0 0 -
Giáo trình Phương pháp toán lí: Phần 2 - Đinh Xuân Khoa & Nguyễn Huy Bằng
139 trang 49 0 0 -
Tuyển tập các bài toán từ đề thi chọn đội tuyển các tỉnh-thành phố năm học 2018-2019
55 trang 49 0 0 -
Giáo trình Toán chuyên đề - Bùi Tuấn Khang
156 trang 41 0 0 -
Giáo trình Hàm biến phức: Phần 2
94 trang 38 0 0 -
Bất phương trình hàm chuyển tiếp từ trung bình cộng thành trung bình bậc k > 1 tùy ý
5 trang 36 0 0 -
Giáo trình Phương pháp Toán Lí
281 trang 35 0 0 -
30 trang 34 0 0
-
99 trang 34 0 0
-
Giáo trình môn Toán: Giải tích đa trị
0 trang 33 0 0