Danh mục tài liệu

Các Phương Pháp Thống Kê (Statistical Method) đối với Chuỗi Thời gian Kinh tế (Economic Time Series)

Số trang: 7      Loại file: doc      Dung lượng: 195.00 KB      Lượt xem: 14      Lượt tải: 0    
Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Khi đánh giá các mối quan hệ, làm các công tác dự báo và kiểm tra các giả thiết từ học thuyết kinh tế, các nhà nghiên cứu thường sử dụng số liệu theo dạng chuỗi thời gian - các sự kiện quan sát được sắp xếp theo trình tự thời gian - để nghiên cứu các biến số kinh tế vĩ mô. Sự tiêu dùng trong một nền kinh tế do vậy phụ thuộc vào tổng thu nhập lao động và của cải, tiền lãi thực tế, phân bố độ tuổi của dân số... Cuốn sách giáo khoa dễ......
Nội dung trích xuất từ tài liệu:
Các Phương Pháp Thống Kê (Statistical Method) đối với Chuỗi Thời gian Kinh tế (Economic Time Series) Các Phương Pháp Thống Kê (Statistical Method) đối với Chuỗi Thời gian Kinh tế (Economic Time Series) Trích từ tài liệu: The Bank of Sweden Prize in Economic Sciences in Memory of Alfred Nobel 2003 - Information for the Public. Khi đánh giá các mối quan hệ, làm các công tác dự báo và kiểm tra các giả thiết từ học thuyết kinh tế, các nhà nghiên cứu thường sử dụng số liệu theo dạng chuỗi thời gian - các sự kiện quan sát được sắp xếp theo trình tự thời gian - để nghiên cứu các biến số kinh tế vĩ mô. Sự tiêu dùng trong một nền kinh tế do vậy phụ thuộc vào tổng thu nhập lao động và của cải, tiền lãi thực tế, phân bố độ tuổi của dân số... Cuốn sách giáo khoa dễ hiểu nhất đưa ra ví dụ của mối quan hệ đó là một phương trình tĩnh, biểu thức tuyến tính với hai biến số: Căn cứ vào phương trình này, biến số yt (lấy ví dụ, sự tiêu dùng trong quý t) phụ thuộc vào biến số xt (lấy ví dụ thu nhập trong cùng thời kỳ). Số cuối của phương trình, sai số ngẫu nhiên, số hạng et, biểu thị biến số tại yt mà nó không giải thích được bằng mô hình. Bằng phương pháp chuỗi thời gian đối với các biến số yt và xt, các tham số α và β có thể được ước tính bằng các phương pháp thống kê (được biết đến như phân tích hồi quy). Các kết luận có cơ sở phỏng đoán rằng các phương pháp này rất phù hợp với những đặc tính cụ thể của trình tự thời gian. Các nhà kinh tế được giải thưởng năm nay đã phát triển các phương pháp nắm bắt hai thuộc tính chủ yếu của nhiều chuỗi thời gian kinh tế đó là : tính bất tĩnh và hay biến đổi của thời gian. Tính bất tĩnh, Các xu hướng chung và Cùng hội nhập (Nonstationarity, Common Trends and Cointegration) Nhiều chuỗi thời gian kinh tế vĩ mô mang tính bất tĩnh: một biến số, như GDP, do đó thường tuân theo xu hướng dài hạn, tại đó các xáo trộn tạm thời ảnh hướng tới nó với mức độ lâu dài. Trái ngược với các chuỗi thời gian tĩnh, chuỗi bất tĩnh không thể hiện bất kỳ xu hướng quay trở lại của một giá trị bất biến hay một xu hướng nhất định nào một cách rõ ràng. Hình 1 cho thấy hai ví dụ của các chuỗi thời gian này. Đường cong có đầu nhọn, với các biến số ngắn hạn lớn biểu diễn tỷ giá từng tháng từ năm 1970 giữa đồng Yên Nhật và đồng Đô la Mỹ. Còn đường cong bằng phẳng hơn biểu diễn quan hệ giữa mức giá tiêu dùng ở Nhật và ở Mỹ trong cùng thời kỳ. Những khó khăn thống kê (Statistical pitfalls) Trong một giai đoạn dài, mặc dù các chuỗi thời gian kinh tế vĩ mô thường là bất tĩnh nhưng các nhà nghiên cứu mới chỉ tiếp cận đến các phương pháp chuẩn được xây dựng cho số liệu tĩnh. Năm 1974, Clive Granger (và đồng nghiệp Paul Newbold của ông) đã chứng minh rằng việc đánh giá các mối quan hệ giữa các biến số bất tĩnh có thể mang lại những kết quả vô lý do những nhầm lẫn trong việc chỉ ra các mối quan hệ có ý nghĩa giữa toàn bộ các biến số không liên quan. (Trong phương trình nêu trên, vấn để nảy sinh nếu sai số ngẫu nhiên e là bất tĩnh. Một bài kiểm tra chuẩn có thể chỉ ra rằng ß khác 0, mặc dù rõ ràng giá trị đúng phải là 0.) Những khó khăn thống kê cũng có thể làm gia tăng kết quả nhầm lẫn trong các trường hợp khi một mối quan hệ thực tế không tồn tại. Nói một cách cụ thể, rất khó có thể phân biệt giữa các mối quan hệ tạm thời và lâu dài trong chuỗi thời gian bất tĩnh. Lấy ví dụ, học thuyết kinh tế mặc nhiên công nhận rằng, trong dài hạn, một tỷ giá mạnh hơn sẽ đi kèm với sự tăng giá chậm tương đối bởi vì giá cả thể hiện một đồng tiền chung không thể quá tách rời lẫn nhau. Xu hướng đó cũng được thể hiện ở Hình 1, tại điểm tỷ giá đồng Yên Nhật mạnh hơn đồng Đô la Mỹ trong một giai đoạn thì mức giá tiêu dùng ở Mỹ tăng lên so với mức giá tiêu dùng tại Nhật. Tuy nhiên, trong giai đoạn ngắn, sự kỳ vọng và biến động của vốn sẽ có ảnh hưởng rộng rãi đến tỷ giá mà các phương pháp chuẩn có thể không dự báo được một cách chính xác mối quan hệ dài hạn đó. Một cách tiếp cận phổ biến để giải quyết vấn để số liệu bất tĩnh là chỉ rõ các mô hình thống kê như mối quan hệ giữa sự chênh lệch về giá cả, có nghĩa là tỷ lệ tăng. Thay vì sử dụng tỷ giá và mức giá tương đối, có thể đánh giá mối quan hệ giữa sự sụt giá của tiền tệ và lạm phát tương đối. Nếu tỷ lệ tăng là quả thật là tĩnh, thì phương pháp truyền thống sẽ cho ta các kết quả đúng. Nhưng thậm chí nếu một mô hình thống kê chỉ dựa trên các số hạng khác biệt thì nó chỉ nắm bắt được các động lực ngắn hạn trong một quá trình mà khó có thể nói được về sự hiệp biến dài hạn của các biến số. Thật là không may khi học thuyết kinh tế thường được hình thành trên phương diện của mức độ và sự không chênh lệch. Do các thuộc tính của số liệu bất tĩnh nên việc tìm các phương pháp có thể chỉ ra mối quan hệ dài hạn tiềm năng bị che đậy bởi sự huyên náo của các dao động ngắn hạn trở nên một nhiệm vụ khó khăn. Công việc của Clive Granger đã tạo ra một phương pháp luận cho phân tích thống kê. Đóng góp của Granger Trong công trình nghiên cứu xuất bản trong những năm 1980's, Granger đã phát triển các khái niệm và phương pháp phân tích kết hợp giữa các viễn cảnh ngắn và dài hạn. Điểm cốt yếu của những phương pháp này và kết luận thống kê có cơ sở là việc phát hiện của ông về một sự kết hợp cụ thể giữa hai (hay nhiều) chuỗi bất tĩnh có thể là tĩnh. Học thuyết kinh tế thường đưa ra các dự đoán chính xác: Nếu có một sự cân bằng quan hệ giữa hai biến số kinh tế, chúng có thể đi trệch sự cân bằng trong ngắn hạn, nhưng sẽ điều chỉnh đối với sự cân bằng trong dài hạn. Lấy ví dụ, học thuyết cổ điển dự đoán một sự cân bằng dài hạn trong tỷ giá tại đó các mức giá được thể hiện trong cùng một đồng tiền chung có tỷ suất ngang nhau. Granger đã đưa ra thuật ngữ cùng hội nhập cho một sự kết hợp tĩnh của các biến số bất tĩnh. Granger cũng chứng minh rằng sự kết hợp năng động giữa các biến số cùng hội nhập có thể được thể hiện trong một cái gọi là mô hình sửa sai. Một mô hình như thế không chỉ rất thống kê mà còn mang lại một sự giải thích về mặt kinh tế rất có ...