Danh mục tài liệu

Đề thi đại học 3

Số trang: 6      Loại file: pdf      Dung lượng: 303.46 KB      Lượt xem: 2      Lượt tải: 0    
Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Tham khảo tài liệu đề thi đại học 3, tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Nội dung trích xuất từ tài liệu:
Đề thi đại học 3 Edited by Foxit Reader Copyright(C) by Foxit Corporation,2005-2010 toác naêm 2009ThS. Ñoaøn Vöông Nguyeân 15 Boä ñeà toaùn caáp For Evaluation Only. −1 −u / 7) ( cot x ) = / 7) ( cot u ) = / = −(1 + cot2 x) = −u/ (1 + cot2u) sin2 x sin2 u 8) ( e x ) = e x 8) ( eu ) = u/ .eu / / 9) ( a x ) = a x .ln a 9) ( a u ) = u/ .a u .ln a / / u/ 1 10) ( ln x ) / 10) ( ln u ) / = = x u 1 u/ 11) ( log a x ) / 11) ( log a u ) / = = x.ln a u.ln a3. Vi phân df(x) = f / (x)dx hay dy = y/dx .III. HÀM S ðƠN ðI U – C C TR C A HÀM S1. Hàm s ñơn ñi u ax + bTr y = , các hàm s còn l i (b c 3, b c 4, b c 2/1) ta dùng k t qu sau: cx + d f(x) ñ ng bi n trên kho ng (a; b) ⇔ f / (x) ≥ 0 ∀x ∈ (a; b) . f(x) ngh ch bi n trên kho ng (a; b) ⇔ f / (x) ≤ 0 ∀x ∈ (a; b) .2. C c tr c a hàm sð nh lý 1. Cho y = f(x) xác ñ nh trên kho ng (a; b) ch a x0. N u f(x) ñ t c c tr t i x0 và có ñ o hàm t i x0 thì f / (x 0 ) = 0 .Chú ý a) Hàm s có th ñ t c c tr t i x0 nhưng không có ñ o hàm t i x0. b) Hàm s có f / (x 0 ) = 0 nhưng có th không ñ t c c tr t i x0.ð nh lý 2. Cho hàm s f(x) có ñ o hàm trong kho ng ch a x0 a) N u f / (x) ñ i d u t + sang – t i x = x 0 thì f(x) ñ t c c ñ i t i x0 b) N u f / (x) ñ i d u t – sang + t i x = x 0 thì f(x) ñ t c c ti u t i x0ð nh lý 3. Cho hàm s f(x) có ñ o hàm ñ n c p hai liên t c trong kho ng ch a x0  f / (x ) = 0  f / (x ) = 0   a) N u  // 0 b) N u  // 0   thì f(x) ñ t c c ti u t i x0; thì f(x) ñ t c c ti u t i x0.    f (x 0 ) > 0  f (x 0 ) > 0    3. ðư ng th ng ñi qua hai ñi m c c tr c a ñ th hàm s (tham kh o)a) Hàm s b c baCho hàm s y = ax3 + bx2 + cx + d có ñ th (C). Gi s (C) có hai ñi m c c tr là A(x1; y1) và B(x2; y2) trong ñó x1, x2 lànghi m c a phương trình y/ = 0 , ñ vi t phương trình ñư ng th ng ñi qua A và B ta th c hi n các bư c sau:Bư c 1. Chia y cho y/ ta ñư c y = (px + q)y/ + αx + β (*).  y = (px + q).y/ ( x ) + αx + β  y = αx1 + β    Bư c 2. Th t a ñ c a A và B vào (*) ta có:  1 1 1 1 ⇔ 1 .  y2 = (px2 + q).y ( x 2 ) + αx2 + β  y 2 = αx 2 + β /     Bư c 3. ðư ng th ng (AB) : y = αx + β .Chú ý: Giá tr c c tr là yCT = αxCT + β . ax 2 + bx + cb) Hàm s h u t y = (tham kh o) dx + e ax 2 + bx + cCho hàm s y = có ñ th (C). Gi s (C) có hai ñi m c c tr là A(x1; y1) và B(x2; y2) trong ñó x1, x2 là nghi m dx + ec a phương trình y/ = 0 , ñ vi t p ...