Danh mục tài liệu

Đề thi đại học 8

Số trang: 6      Loại file: pdf      Dung lượng: 308.18 KB      Lượt xem: 2      Lượt tải: 0    
Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Tham khảo tài liệu đề thi đại học 8, tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Nội dung trích xuất từ tài liệu:
Đề thi đại học 8 Edited by Foxit Reader Copyright(C) by Foxit Corporation,2005-2010 toác naêm 2009ThS. Ñoaøn Vöông Nguyeân 15 Boä ñeà toaùn caáp For Evaluation Only. ð S 10I. PH N CHUNG CHO T T C THÍ SINH (7,0 ñi m)Câu I (2,0 ñi m) 2x − 3 Cho hàm s y = có ñ th là (C). 1−x 1. Kh o sát s bi n thiên c a hàm s và v ñ th (C). 2. G i I là giao ñi m hai ti m c n c a (C). Tìm trên hai nhánh c a (C) hai ñi m A, B sao cho AB vuông góc v i ñư ng th ng OI và có ñ dài AB ng n nh t.Câu II (2,0 ñi m) 1. Gi i phương trình: cotgx + 3 + tgx + 2cotg2x − 3 = 0 . 2 ( 4 − log16 x 4 ) . log 2 x + 4 log 2 x≤ 2. Gi i b t phương trình: 0,5Câu III (1,0 ñi m) π 3 tan x ∫ cos x Tính tích phân I = dx . 1 + cos2 x π 4Câu IV (1,0 ñi m) Cho hình chóp S.ABCD có ñáy ABCD là hình vuông c nh a. M t ph ng (SAC) vuông góc v i ñáy, ASC = 900 và SA t o v i ñáy m t góc b ng 300. Tính th tích kh i chóp S.ABCD theo a.Câu V (1,0 ñi m) ( ) Cho 2 s th c x, y th a ñ ng th c x + y − 3 x − 2 + y + 1 − 1 = 0 . Tìm giá tr l n nh t và nh nh t c a A = (x − 2)(y + 1) .II. PH N RIÊNG (3,0 ñi m)Thí sinh ch ñư c làm m t trong hai ph n (ph n 1 ho c 2)1. Theo chương trình Chu nCâu VI.a (2,0 ñi m) 1. Trong m t ph ng v i h t a ñ Oxy cho ∆ABC cân có ñáy là BC. ð nh A có t a ñ là các s dương, hai ñi m B và C n m trên tr c Ox, phương trình AB : y = 3 7(x − 1) . Cho bi t chu vi ∆ABC b ng 18. Tìm t a ñ các ñ nh A, B, C. 2. Trong không gian v i h t a ñ Oxyz cho hai ñi m A(0; 0;–3), B(2; 0;–1) và m t ph ng ( P ) : 3x − 8y + 7z − 1 = 0 . Tìm t a ñ c a ñi m C trên (P) sao cho ∆ABC ñ u.Câu VII.a (1,0 ñi m) L p 12A g m 45 h c sinh, trong ñó có 29 n . T l p ñó ngư i ta ch n ra 1 bí thư ñoàn, 1 phó bí thư và 3 y viên. H i có m y cách ch n sao cho trong 5 ngư i ñư c ch n ph i có n .2. Theo chương trình Nâng caoCâu VI.b (2,0 ñi m) x2 + x − 1 1. Trên ñ th c a hàm s y = có hai ñi m A, B phân bi t mà t i ñó ti p tuy n song x −1 song v i nhau. Ch ng t r ng A và B ñ i x ng qua giao ñi m I c a 2 ti m c n. 2. Trong không gian v i h t a ñ Oxyz, cho m t ph ng (P) : x + 2y + 2z + 20 + 3 131 = 0 và ba ñi m A(1; 1; 0), B(3;–1; 0), C(–3; 3; 0). Tìm t a ñ ñi m M cách ñ u A, B, C và (P).Câu VII.b (1,0 ñi m) ( ) 2009 Vi t s ph c sau dư i d ng lư ng giác: z = (1 − i)2008 3+i . ……………………H t…………………….. Trang 35 Edited by Foxit Reader Copyright(C) by Foxit Corporation,2005-2010 toác naêm 2009ThS. Ñoaøn Vöông Nguyeân 15 Boä ñeà toaùn caáp For Evaluation Only. ð S 11I. PH N CHUNG CHO T T C THÍ SINH (7,0 ñi m)Câu I (2,0 ñi m) 1 − 2x Cho hàm s y = có ñ th là (C). x +1 1. Kh o sát s bi n thiên c a hàm s và v ñ th (C). 2a. Vi t phương trình ti p tuy n v i (C), bi t ti p tuy n ñi qua g c t a ñ O(0; 0). b. Tìm nh ng ñi m trên (C) có t ng kho ng cách t ñó ñ n 2 ti m c n c a (C) là nh nh t.Câu II (2,0 ñi m)  π  π 1. Gi i phương trình: 2 cos3  x −  − sin 2x + sin  x +  − 2 = 0 .          4  4 2. Gi i phương trình: log 3−2x (2x 2 − 9x + 9) + log 3−x (4x 2 − 12x + 9) − 4 = 0 .Câu III (1,0 ñi m) 0 dx Tính tích phân I = ∫ . −2x 2 − 4x + 2 −1Câu IV (1,0 ñi m) Cho kh i lăng tr ñ ng ABC.A’B’C’ có di n tích ñáy S = 30cm2 và AA’ = 10cm. M t m t ph ng (P) c t các c nh AA’, BB’, CC’ l n lư t t i A1, B1, C1. Bi t AA1 = 3cm, BB1 = 4cm và CC1 = 5cm. Tính th tích hai ph n c a kh i lăng tr ñư c phân chia b i (P).Câu V (1,0 ñi m) Cho 2 s th c x, y th a x2 + y2 + xy = 3. Tìm giá tr l n nh t, nh nh t c a bi u th c: M = x 4 + y 4 + x 3 y 3 − 2xy(x + y)2 + 3xy .II. PH N RIÊNG (3,0 ñi m)Thí sinh ch ñư c làm m t trong hai ph n (ph n 1 ho c 2)1. Theo chương trình Chu nCâu VI.a (2,0 ñi m) 1. Trong m t ph ng v i h t a ñ Oxy cho ∆ABC có c nh AC ñi qua ñi m M(0;– 1). Cho bi t AB = 2 ...