Đề thi học sinh giỏi môn Toán lớp 8 cấp huyện năm 2019-2020 có đáp án - Phòng GD&ĐT Thủy Nguyên
Số trang: 3
Loại file: pdf
Dung lượng: 228.90 KB
Lượt xem: 3
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Đề thi học sinh giỏi môn Toán lớp 8 cấp huyện năm 2019-2020 có đáp án - Phòng GD&ĐT Thủy Nguyên dành cho các bạn học sinh lớp 8 và quý thầy cô tham khảo giúp các bạn học sinh có thêm tài liệu chuẩn bị ôn tập cho kì thi học sinh giỏi sắp tới được tốt hơn cũng như giúp quý thầy cô nâng cao kỹ năng biên soạn đề thi của mình. Mời các thầy cô và các bạn tham khảo.
Nội dung trích xuất từ tài liệu:
Đề thi học sinh giỏi môn Toán lớp 8 cấp huyện năm 2019-2020 có đáp án - Phòng GD&ĐT Thủy Nguyên UBND HUYỆN THUỶ NGUYÊN ĐỀ THI CHỌN HỌC SINH GIỎI CẤP HUYỆN PHÒNG GIÁO DỤC VÀ ĐÀO TẠO NĂM HỌC 2019-2020 MÔN: TOÁN 8 Thời gian: 90 phút( Không kể thời gian giao đề)Câu 1. (3 điểm) 1. Phân tích các đa thức sau thành nhân tử : a, x 4 4 b, x 2 x 3 x 4 x 5 24 a b c 2. Cho 1. Chứng minh rằng: b c c a a b a2 b2 c2 0 b c c a a bCâu 2: (2 điểm) 1. Tìm a,b sao cho f x ax 3 bx 2 10x 4 chia hết cho đa thức g x x2 x 2 2. Tìm số nguyên a sao cho a 4 4 là số nguyên tốCâu 3.( 3,5 điểm) Cho hình vuông ABCD, M là một điểm tuỳ ý trên đường chéo BD. Kẻ ME AB, MF AD. a. Chứng minh: DE = CF b. Chứng minh ba đường thẳng: DE, BF, CM đồng quy. c. Xác định vị trí của điểm M để diện tích tứ giác AEMF lớn nhất.Câu 4.(1,5 điểm) Cho a, b dương và a2000 + b2000 = a2001 + b2001 = a2002 + b2002 Tinh: a2011 + b2011 --------------------------HẾT-------------------------- UBND HUYỆN THUỶ NGUYÊN HƯỚNG DẪN CHẤM THI CHỌN HSGPHÒNG GIÁO DỤC VÀ ĐÀO TẠO MÔN: TOÁN 8 Câu Đáp án Điểm 1a. x4 + 4 = x4 + 4x2 + 4 - 4x2 0,5 = (x4 + 4x2 + 4) - (2x)2 0,25 = (x2 + 2 + 2x)(x2 + 2 - 2x) 0,25 1b. ( x + 2)( x + 3)( x + 4)( x + 5) - 24 = (x2 + 7x + 11 - 1)( x2 + 7x + 11 + 1) - 24 1 = [(x2 + 7x + 11)2 - 1] - 24 0,25 = (x2 + 7x + 11)2 - 52 0,25 = (x2 + 7x + 6)( x2 + 7x + 16) 0,25 = (x + 1)(x + 6) )( x2 + 7x + 16) 0,25 a b c 2. Nhân cả 2 vế của: 1 b c c a a b với a + b + c 0,5 rút gọn đpcm 0,5 1. Ta có : g x x 2 x 2= x 1 x 2 Vì f x ax 3 bx 2 10x 4 chia hết cho đa thức 0,25 g x x2 x 2 2 Nên tồn tại một đa thức q(x) sao cho f(x)=g(x).q(x) ax3 bx 2 10x 4= x+2 . x-1 .q x 0,25 Với x=1 a+b+6=0 b=-a-6 1 Với x=-2 2a-b+6=0 2 0,25 Thay (1) vào (2) . Ta có : a=2 và b=4 0,25 2. Ta có : a 4 4= a 2 -2a+2 a 2 +2a+2 0,25 Vì a Z a 2 -2a+2 Z ;a 2 +2a+2 Z Có a 2 +2a+2= a+1 1 1 a 2 0,25 Và a 2 -2a+2= a-1 1 1 a 2 Vậy a 4 4 là số nguyên tố thì a 2 +2a+2=1 hoặc a 2 - 2a+2=1 0,25 Nếu a 2 -2a+2=1 a 1 thử lại thấy thoả mãn Nếu a 2 +2a+2=1 a 1 thử lại thấy thoả mãn 0,25 A E B 0,25 F M D C a. Chứng minh: AE FM DF 0,5 AED DFC đpcm 0,53 b. DE, BF, CM là ba đường cao của EFC đpcm 1 c. Có Chu vi hình chữ nhật AEMF = 2a không đổi ME MF a không đổi 0,5 SAEMF ME.MF lớn nhất 0,25 ME MF (AEMF là h.v) 0,25 M là trung điểm của BD. 0,25 (a2001 + b2001).(a+ b) - (a2000 + b2000).ab = a2002 + b2002 0,25 (a+ b) – ab = 1 0,25 (a – 1).(b – 1) = 0 0,254 a = 1 hoặc b = 1 0,25 Vì a = 1 => b2000 = b2001 => b = 1; hoặc b = 0 (loại) Vì b = 1 => a2000 = a2001 => a = 1; hoặc a = 0 (loại) 0,25 Vậy a = 1; b = 1 => a2011 + b2011 = 2 0,25 * Chú ý : Học sinh giải cách khác đúng vẫn cho điểm tối đa -----------------HẾT------------------ ...
Nội dung trích xuất từ tài liệu:
Đề thi học sinh giỏi môn Toán lớp 8 cấp huyện năm 2019-2020 có đáp án - Phòng GD&ĐT Thủy Nguyên UBND HUYỆN THUỶ NGUYÊN ĐỀ THI CHỌN HỌC SINH GIỎI CẤP HUYỆN PHÒNG GIÁO DỤC VÀ ĐÀO TẠO NĂM HỌC 2019-2020 MÔN: TOÁN 8 Thời gian: 90 phút( Không kể thời gian giao đề)Câu 1. (3 điểm) 1. Phân tích các đa thức sau thành nhân tử : a, x 4 4 b, x 2 x 3 x 4 x 5 24 a b c 2. Cho 1. Chứng minh rằng: b c c a a b a2 b2 c2 0 b c c a a bCâu 2: (2 điểm) 1. Tìm a,b sao cho f x ax 3 bx 2 10x 4 chia hết cho đa thức g x x2 x 2 2. Tìm số nguyên a sao cho a 4 4 là số nguyên tốCâu 3.( 3,5 điểm) Cho hình vuông ABCD, M là một điểm tuỳ ý trên đường chéo BD. Kẻ ME AB, MF AD. a. Chứng minh: DE = CF b. Chứng minh ba đường thẳng: DE, BF, CM đồng quy. c. Xác định vị trí của điểm M để diện tích tứ giác AEMF lớn nhất.Câu 4.(1,5 điểm) Cho a, b dương và a2000 + b2000 = a2001 + b2001 = a2002 + b2002 Tinh: a2011 + b2011 --------------------------HẾT-------------------------- UBND HUYỆN THUỶ NGUYÊN HƯỚNG DẪN CHẤM THI CHỌN HSGPHÒNG GIÁO DỤC VÀ ĐÀO TẠO MÔN: TOÁN 8 Câu Đáp án Điểm 1a. x4 + 4 = x4 + 4x2 + 4 - 4x2 0,5 = (x4 + 4x2 + 4) - (2x)2 0,25 = (x2 + 2 + 2x)(x2 + 2 - 2x) 0,25 1b. ( x + 2)( x + 3)( x + 4)( x + 5) - 24 = (x2 + 7x + 11 - 1)( x2 + 7x + 11 + 1) - 24 1 = [(x2 + 7x + 11)2 - 1] - 24 0,25 = (x2 + 7x + 11)2 - 52 0,25 = (x2 + 7x + 6)( x2 + 7x + 16) 0,25 = (x + 1)(x + 6) )( x2 + 7x + 16) 0,25 a b c 2. Nhân cả 2 vế của: 1 b c c a a b với a + b + c 0,5 rút gọn đpcm 0,5 1. Ta có : g x x 2 x 2= x 1 x 2 Vì f x ax 3 bx 2 10x 4 chia hết cho đa thức 0,25 g x x2 x 2 2 Nên tồn tại một đa thức q(x) sao cho f(x)=g(x).q(x) ax3 bx 2 10x 4= x+2 . x-1 .q x 0,25 Với x=1 a+b+6=0 b=-a-6 1 Với x=-2 2a-b+6=0 2 0,25 Thay (1) vào (2) . Ta có : a=2 và b=4 0,25 2. Ta có : a 4 4= a 2 -2a+2 a 2 +2a+2 0,25 Vì a Z a 2 -2a+2 Z ;a 2 +2a+2 Z Có a 2 +2a+2= a+1 1 1 a 2 0,25 Và a 2 -2a+2= a-1 1 1 a 2 Vậy a 4 4 là số nguyên tố thì a 2 +2a+2=1 hoặc a 2 - 2a+2=1 0,25 Nếu a 2 -2a+2=1 a 1 thử lại thấy thoả mãn Nếu a 2 +2a+2=1 a 1 thử lại thấy thoả mãn 0,25 A E B 0,25 F M D C a. Chứng minh: AE FM DF 0,5 AED DFC đpcm 0,53 b. DE, BF, CM là ba đường cao của EFC đpcm 1 c. Có Chu vi hình chữ nhật AEMF = 2a không đổi ME MF a không đổi 0,5 SAEMF ME.MF lớn nhất 0,25 ME MF (AEMF là h.v) 0,25 M là trung điểm của BD. 0,25 (a2001 + b2001).(a+ b) - (a2000 + b2000).ab = a2002 + b2002 0,25 (a+ b) – ab = 1 0,25 (a – 1).(b – 1) = 0 0,254 a = 1 hoặc b = 1 0,25 Vì a = 1 => b2000 = b2001 => b = 1; hoặc b = 0 (loại) Vì b = 1 => a2000 = a2001 => a = 1; hoặc a = 0 (loại) 0,25 Vậy a = 1; b = 1 => a2011 + b2011 = 2 0,25 * Chú ý : Học sinh giải cách khác đúng vẫn cho điểm tối đa -----------------HẾT------------------ ...
Tìm kiếm theo từ khóa liên quan:
Đề thi học sinh giỏi Đề thi học sinh giỏi lớp 8 Đề thi HSG lớp 8 Đề thi học sinh giỏi năm 2021 Đề thi học sinh giỏi môn Toán 8 cấp huyện Luyện thi HSG Toán 8 Ôn thi học sinh giỏi lớp 8 môn Toán Đề thi học sinh giỏi lớp 8 cấp huyệnTài liệu có liên quan:
-
8 trang 423 0 0
-
Bộ đề thi học sinh giỏi môn Lịch sử lớp 12 cấp tỉnh năm 2020-2021 có đáp án
26 trang 398 0 0 -
7 trang 367 0 0
-
Đề thi học sinh giỏi môn GDCD lớp 12 năm 2023-2024 có đáp án - Trường THPT Mai Anh Tuấn, Thanh Hóa
28 trang 324 0 0 -
8 trang 318 0 0
-
Đề thi học sinh giỏi môn Ngữ văn lớp 6 năm 2022-2023 có đáp án - Trường THCS Ninh An
8 trang 303 0 0 -
Đề thi học sinh giỏi cấp tỉnh môn Vật lý THPT năm 2023-2024 có đáp án - Sở GD&ĐT Vĩnh Long
6 trang 291 0 0 -
8 trang 286 0 0
-
Ebook Bồi dưỡng học sinh giỏi Tiếng Anh lớp 5 theo chuyên đề
138 trang 284 0 0 -
Đề thi học sinh giỏi môn Ngữ văn lớp 8 năm 2021-2022 có đáp án - Phòng GD&ĐT Châu Đức
4 trang 251 0 0