ĐỀ THI THỬ ĐẠI HỌC – CAO ĐẲNG 2011 MÔN: TOÁN- KHỐI A - ĐẠI HỌC SƯ PHẠM HÀ NỘI KHOA TOÁN-TIN
Số trang: 5
Loại file: pdf
Dung lượng: 259.65 KB
Lượt xem: 5
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Tham khảo tài liệu đề thi thử đại học – cao đẳng 2011 môn: toán- khối a - đại học sư phạm hà nội khoa toán-tin, tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Nội dung trích xuất từ tài liệu:
ĐỀ THI THỬ ĐẠI HỌC – CAO ĐẲNG 2011 MÔN: TOÁN- KHỐI A - ĐẠI HỌC SƯ PHẠM HÀ NỘI KHOA TOÁN-TIN ĐỀ THI THỬ ĐẠI HỌC – CAO ĐẲNG 2011ĐẠI HỌC SƯ PHẠM HÀ NỘI MÔN: TOÁN- KHỐI A KHOA TOÁN-TIN Thời gian làm bài: 180 phút ( không kể thời gian giao đề ) ----------------------------------------------------------------------------------------------------------------------------------------------------------A. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm ) 2x 1Câu I: (2,0 điểm) Cho hàm số: y (C). x 1 1. Khảo sát sự biến thiên và vẽ đồ thị (C). 2. Gọi I là giao điểm của hai tiệm cận, M là một điểm bất kì trên (C), tiếp tuyến của (C) tại M cắt các tiệm cận tại A, B. Chứng minh rằng diện tích tam giác IAB không đổi khi M thay đổi trên (C).Câu II: (2,0 điểm) sin 3 x.sin 3 x cos3 x.cos3 x 1 1. Giải phương trình 8 tan x .tan x 6 3 2. Giải phương trình 1 1 x 2 1 x 1 x 2 1 x 2 . 3 3 1 Câu III. (1,0 điểm) Tính tích phân I x ln x 2 x 1 dx . 0 a3 , góc BAD bằng 600 . GọiCâu IV. (1,0 điểm) Cho hình hộp đứng ABCD.A’B’C’D’ có AB AD a , AA 2M, N lần lượt là trung điểm của cạnh A’D’ và A’B’. Chứng minh AC’ vuông góc với mặt phẳng (BDMN) và tính thểtích khối đa diện AA’BDMN theo a .Câu V. (1,0 điểm) Chứng minh rằng với mọi số thực dương a, b, c thỏa mãn a 2 b 2 c 2 1 , ta có:a5 2a3 a b5 2b 3 b c5 2c 3 c 2 3 . b2 c 2 c2 a2 a2 b2 3B. PHẦN RIÊNG (3,0 ĐIỂM):Thí sinh chỉ được làm một trong hai phần (phần A hoặc B)I. Theo chương trình ChuẩnCâu VI.a (2,0 điểm) 1. Trong mặt phẳng với hệ tọa độ Oxy, cho hình chữ nhật ABCD có diện tích bằng 12, tâm I là giao đi ểm của hai đường thẳng: d1 : x – y – 3 = 0, d2 : x + y – 6 = 0. Trung điểm một cạnh là giao điểm của d1 và tia Ox. Tìm tọa độ các đỉnh của hình chữ nhật. x 14 y z 5 2. Trong không gian với hệ tọa độ Oxyz, cho điểm I(1;1;1) và đường thẳng d: . Viết phương 2 4 1 trình mặt cầu (S) tâm I và cắt d tại hai điểm A, B sao cho độ dài đoạn thẳng AB bằng 16. n 1 2Câu VII.a (1,0 điểm) Tìm hệ số chứa x trong khai triển: x , biết n là số nguyên dương thỏa mãn: 4 2 x 2 n1 n 6560 22 1 23 2 0 2Cn ...
Nội dung trích xuất từ tài liệu:
ĐỀ THI THỬ ĐẠI HỌC – CAO ĐẲNG 2011 MÔN: TOÁN- KHỐI A - ĐẠI HỌC SƯ PHẠM HÀ NỘI KHOA TOÁN-TIN ĐỀ THI THỬ ĐẠI HỌC – CAO ĐẲNG 2011ĐẠI HỌC SƯ PHẠM HÀ NỘI MÔN: TOÁN- KHỐI A KHOA TOÁN-TIN Thời gian làm bài: 180 phút ( không kể thời gian giao đề ) ----------------------------------------------------------------------------------------------------------------------------------------------------------A. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm ) 2x 1Câu I: (2,0 điểm) Cho hàm số: y (C). x 1 1. Khảo sát sự biến thiên và vẽ đồ thị (C). 2. Gọi I là giao điểm của hai tiệm cận, M là một điểm bất kì trên (C), tiếp tuyến của (C) tại M cắt các tiệm cận tại A, B. Chứng minh rằng diện tích tam giác IAB không đổi khi M thay đổi trên (C).Câu II: (2,0 điểm) sin 3 x.sin 3 x cos3 x.cos3 x 1 1. Giải phương trình 8 tan x .tan x 6 3 2. Giải phương trình 1 1 x 2 1 x 1 x 2 1 x 2 . 3 3 1 Câu III. (1,0 điểm) Tính tích phân I x ln x 2 x 1 dx . 0 a3 , góc BAD bằng 600 . GọiCâu IV. (1,0 điểm) Cho hình hộp đứng ABCD.A’B’C’D’ có AB AD a , AA 2M, N lần lượt là trung điểm của cạnh A’D’ và A’B’. Chứng minh AC’ vuông góc với mặt phẳng (BDMN) và tính thểtích khối đa diện AA’BDMN theo a .Câu V. (1,0 điểm) Chứng minh rằng với mọi số thực dương a, b, c thỏa mãn a 2 b 2 c 2 1 , ta có:a5 2a3 a b5 2b 3 b c5 2c 3 c 2 3 . b2 c 2 c2 a2 a2 b2 3B. PHẦN RIÊNG (3,0 ĐIỂM):Thí sinh chỉ được làm một trong hai phần (phần A hoặc B)I. Theo chương trình ChuẩnCâu VI.a (2,0 điểm) 1. Trong mặt phẳng với hệ tọa độ Oxy, cho hình chữ nhật ABCD có diện tích bằng 12, tâm I là giao đi ểm của hai đường thẳng: d1 : x – y – 3 = 0, d2 : x + y – 6 = 0. Trung điểm một cạnh là giao điểm của d1 và tia Ox. Tìm tọa độ các đỉnh của hình chữ nhật. x 14 y z 5 2. Trong không gian với hệ tọa độ Oxyz, cho điểm I(1;1;1) và đường thẳng d: . Viết phương 2 4 1 trình mặt cầu (S) tâm I và cắt d tại hai điểm A, B sao cho độ dài đoạn thẳng AB bằng 16. n 1 2Câu VII.a (1,0 điểm) Tìm hệ số chứa x trong khai triển: x , biết n là số nguyên dương thỏa mãn: 4 2 x 2 n1 n 6560 22 1 23 2 0 2Cn ...
Tìm kiếm theo từ khóa liên quan:
ôn thi tốt nghiệp luyện thi đại học toán nâng cao đề thi toán đề thi học sinh giỏi toán chuyênTài liệu có liên quan:
-
8 trang 423 0 0
-
Bộ đề thi học sinh giỏi môn Lịch sử lớp 12 cấp tỉnh năm 2020-2021 có đáp án
26 trang 397 0 0 -
7 trang 366 0 0
-
Đề thi học sinh giỏi môn GDCD lớp 12 năm 2023-2024 có đáp án - Trường THPT Mai Anh Tuấn, Thanh Hóa
28 trang 323 0 0 -
8 trang 317 0 0
-
Đề thi học sinh giỏi môn Ngữ văn lớp 6 năm 2022-2023 có đáp án - Trường THCS Ninh An
8 trang 301 0 0 -
Đề thi học sinh giỏi cấp tỉnh môn Vật lý THPT năm 2023-2024 có đáp án - Sở GD&ĐT Vĩnh Long
6 trang 290 0 0 -
Ebook Bồi dưỡng học sinh giỏi Tiếng Anh lớp 5 theo chuyên đề
138 trang 284 0 0 -
8 trang 284 0 0
-
Đề thi học sinh giỏi môn Ngữ văn lớp 8 năm 2021-2022 có đáp án - Phòng GD&ĐT Châu Đức
4 trang 251 0 0