Đề thi thử tốt nghiệp THPT môn toán trường Lương Thế Vinh đề số 4
Số trang: 7
Loại file: pdf
Dung lượng: 241.87 KB
Lượt xem: 17
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Các bạn học sinh và quý thầy cô tham khảo miễn phí Đề thi thử tốt nghiệp THPT môn toán trường Lương Thế Vinh đề số 4 để hệ thống kiến thức học tập cũng như trau dồi kinh nghiệm ra đề thi
Nội dung trích xuất từ tài liệu:
Đề thi thử tốt nghiệp THPT môn toán trường Lương Thế Vinh đề số 4TRƯỜNG THPT LƯƠNG THẾ VINH KỲ THI TỐT NGHIỆP THPT ĐỀ THI THỬ TỐT NGHIỆP Môn thi: TOÁN − Giáo dục trung học phổ thông Đề số 4 Thời gian làm bài: 150 phút, không kể thời gian giao đề ------------------------------ ---------------------------------------------------I. PHẦN CHUNG DÀNH CHO TẤT CẢ CÁC THÍ SINH (7,0 điểm) 2x - 1Câu I (3,0 điểm): Cho hàm số: y = x- 1 1) Khảo sát sự biến thiên và vẽ đồ thị (C ) của hàm số đã cho. 2) Viết phương trình tiếp tuyến với đồ thị (C ) biết tiếp tuyến có hệ số góc bằng – 4.Câu II (3,0 điểm): 1) Giải phương trình: log2 x - log4 (4x 2 ) - 5 = 0 2 p 3 sin x + cos x 2) Tính tích phân: I = ò0 dx cos x 3) Tìm các giá trị của tham số m để hàm số sau đây đạt cực tiểu tại điểm x 0 = 2 y = x 3 - 3m x 2 + (m 2 - 1)x + 2Câu III (1,0 điểm): · Cho hình chóp S.ABC có đáy là tam giác vuông tại B, BA C = 300 ,SA = AC = a và SA vuông góc với mặt phẳng (ABC).Tính VS.ABC và khoảng cách từ A đến mặt phẳng (SBC).II. PHẦN RIÊNG (3,0 điểm) Thí sinh chỉ được chọn một trong hai phần dưới đây1. Theo chương trình chuẩn r r r uuur r rCâu IVa (2,0 điểm): Trong không gian với hệ toạ độ (O , i , j , k ) , cho OM = 3i + 2k , mặt cầu (S ) có phương trình: (x - 1)2 + (y + 2)2 + (z - 3)2 = 9 1) Xác định toạ độ tâm I và bán kính của mặt cầu (S ) . Chứng minh rằng điểm M nằm trên mặt cầu, từ đó viết phương trình mặt phẳng (a ) tiếp xúc với mặt cầu tại M. 2) Viết phương trình đường thẳng d đi qua tâm I của mặt cầu, song song với mặt phẳng x+1 y- 6 z- 2 (a ) , đồng thời vuông góc với đường thẳng D : = = . 3 - 1 1Câu Va (1,0 điểm): Giải phương trình sau đây trên tập số phức: - z 2 + 2z - 5 = 02. Theo chương trình nâng caoCâu IVb (2,0 điểm): Trong không gian với hệ toạ độ Oxyz, cho tứ diện ABCD có toạ độ cácđỉnh là A(1;1;1) , B(1;2;1) , C(1;1;2) , D(2;2;1) 1) Viết phương trình đường vuông góc chung của AB và CD. 2) Viết phương trình mặt cầu (S) ngoại tiếp tứ diện ABCD.Câu Vb (1,0 điểm): Tính diện tích hình phẳng giới hạn bởi các đường sau đây y = ln x , trục hoành và x = e ---------- Hết --------- Thí sinh không được sử dụng tài liệu. Giám thị coi thi không giải thích gì thêm. Họ và tên thí sinh: ........................................ Số báo danh:............................................... Chữ ký của giám thị 1: .................................. Chữ ký của giám thị 2: ................................. BÀI GIẢI CHI TIẾT.Câu I: 2x - 1 y= x- 1 Tập xác định: D = ¡ {1} - 1 Đạo hàm: y ¢ = < 0, x Î D (x - 1)2 Hàm số đã cho NB trên các khoảng xác định và không đạt cực trị. Giới hạn và tiệm cận: lim y = 2 ; lim y = 2 Þ y = 2 là tiệm cận ngang. x®- ¥ x® +¥ lim y = - ¥ ; lim y = + ¥ Þ x = 1 là tiệm cận đứng. x ® 1- x ® 1+ Bảng biến thiên x – 1 + y¢ – – 2 y + y – 2 1 Giao điểm với trục hoành: y = 0 Û 2x - 1 = 0 Û x = 2 3 Giao điểm với trục tung: cho x = 0 Þ y = 1 ...
Nội dung trích xuất từ tài liệu:
Đề thi thử tốt nghiệp THPT môn toán trường Lương Thế Vinh đề số 4TRƯỜNG THPT LƯƠNG THẾ VINH KỲ THI TỐT NGHIỆP THPT ĐỀ THI THỬ TỐT NGHIỆP Môn thi: TOÁN − Giáo dục trung học phổ thông Đề số 4 Thời gian làm bài: 150 phút, không kể thời gian giao đề ------------------------------ ---------------------------------------------------I. PHẦN CHUNG DÀNH CHO TẤT CẢ CÁC THÍ SINH (7,0 điểm) 2x - 1Câu I (3,0 điểm): Cho hàm số: y = x- 1 1) Khảo sát sự biến thiên và vẽ đồ thị (C ) của hàm số đã cho. 2) Viết phương trình tiếp tuyến với đồ thị (C ) biết tiếp tuyến có hệ số góc bằng – 4.Câu II (3,0 điểm): 1) Giải phương trình: log2 x - log4 (4x 2 ) - 5 = 0 2 p 3 sin x + cos x 2) Tính tích phân: I = ò0 dx cos x 3) Tìm các giá trị của tham số m để hàm số sau đây đạt cực tiểu tại điểm x 0 = 2 y = x 3 - 3m x 2 + (m 2 - 1)x + 2Câu III (1,0 điểm): · Cho hình chóp S.ABC có đáy là tam giác vuông tại B, BA C = 300 ,SA = AC = a và SA vuông góc với mặt phẳng (ABC).Tính VS.ABC và khoảng cách từ A đến mặt phẳng (SBC).II. PHẦN RIÊNG (3,0 điểm) Thí sinh chỉ được chọn một trong hai phần dưới đây1. Theo chương trình chuẩn r r r uuur r rCâu IVa (2,0 điểm): Trong không gian với hệ toạ độ (O , i , j , k ) , cho OM = 3i + 2k , mặt cầu (S ) có phương trình: (x - 1)2 + (y + 2)2 + (z - 3)2 = 9 1) Xác định toạ độ tâm I và bán kính của mặt cầu (S ) . Chứng minh rằng điểm M nằm trên mặt cầu, từ đó viết phương trình mặt phẳng (a ) tiếp xúc với mặt cầu tại M. 2) Viết phương trình đường thẳng d đi qua tâm I của mặt cầu, song song với mặt phẳng x+1 y- 6 z- 2 (a ) , đồng thời vuông góc với đường thẳng D : = = . 3 - 1 1Câu Va (1,0 điểm): Giải phương trình sau đây trên tập số phức: - z 2 + 2z - 5 = 02. Theo chương trình nâng caoCâu IVb (2,0 điểm): Trong không gian với hệ toạ độ Oxyz, cho tứ diện ABCD có toạ độ cácđỉnh là A(1;1;1) , B(1;2;1) , C(1;1;2) , D(2;2;1) 1) Viết phương trình đường vuông góc chung của AB và CD. 2) Viết phương trình mặt cầu (S) ngoại tiếp tứ diện ABCD.Câu Vb (1,0 điểm): Tính diện tích hình phẳng giới hạn bởi các đường sau đây y = ln x , trục hoành và x = e ---------- Hết --------- Thí sinh không được sử dụng tài liệu. Giám thị coi thi không giải thích gì thêm. Họ và tên thí sinh: ........................................ Số báo danh:............................................... Chữ ký của giám thị 1: .................................. Chữ ký của giám thị 2: ................................. BÀI GIẢI CHI TIẾT.Câu I: 2x - 1 y= x- 1 Tập xác định: D = ¡ {1} - 1 Đạo hàm: y ¢ = < 0, x Î D (x - 1)2 Hàm số đã cho NB trên các khoảng xác định và không đạt cực trị. Giới hạn và tiệm cận: lim y = 2 ; lim y = 2 Þ y = 2 là tiệm cận ngang. x®- ¥ x® +¥ lim y = - ¥ ; lim y = + ¥ Þ x = 1 là tiệm cận đứng. x ® 1- x ® 1+ Bảng biến thiên x – 1 + y¢ – – 2 y + y – 2 1 Giao điểm với trục hoành: y = 0 Û 2x - 1 = 0 Û x = 2 3 Giao điểm với trục tung: cho x = 0 Þ y = 1 ...
Tìm kiếm theo từ khóa liên quan:
Đề thi thử tốt nghiệp môn toán Đề thi thử TN toán 12 Đề ôn thi tốt nghiệp THPT môn toán Đề ôn thi tốt nghiệp toán 12 Đề thi môn toán 12 Đề thi thử TN THPT môn Toán trường Lương Thế VinhTài liệu có liên quan:
-
Tuyển tập 20 đề thi tốt nghiệp môn Toán của Bộ Giáo dục - Đặng Việt Đông
474 trang 42 0 0 -
25 Đề ôn thi tốt nghiệp THPT môn toán và đáp án
92 trang 37 0 0 -
Đề ôn thi tốt nghiệp THPT môn toán năm 2013 đề số 1
1 trang 31 0 0 -
Trường THPT chuyên Huỳnh Mẫn Đạt - ĐỀ THI HỌC KỲ II MÔN TOÁN KHỐI 12 NĂM HỌC 2010-2011
6 trang 30 0 0 -
Đề thi thử tốt nghiệp THPT môn Toán Đề Số 6
3 trang 28 0 0 -
Đề ôn thi tốt nghiệp THPT môn toán năm 2013 đề số 20
1 trang 28 0 0 -
Đề ôn thi tốt nghiệp THPT môn toán năm 2013 đề số 29
1 trang 27 0 0 -
Đề thi thử tốt nghiệp THPT môn Toán Đề Số 10
3 trang 27 0 0 -
Đề ôn thi tốt nghiệp THPT môn toán năm 2013 đề số 6
1 trang 27 0 0 -
Đề thi thử tốt nghiệp THPT môn toán trường Lương Thế Vinh đề số 6
6 trang 26 0 0