Đề thi tuyển sinh lớp 10 năm 2004
Số trang: 4
Loại file: pdf
Dung lượng: 612.82 KB
Lượt xem: 16
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Nêu tập xác định , chiều biến thiên và vẽ đồ thi của hàm số. Lập phơng trình đờng thẳng đi qua điểm có hệ số góc a và tiếp xúc với đồ thị hàm số trên .Cho phơng trình Gọi hai nghiệm của phơng trình là x1 , x2 . Tính giá trị của biểu thức .
Nội dung trích xuất từ tài liệu:
Đề thi tuyển sinh lớp 10 năm 2004 Đề thi tuyển sinh lớp 10 năm 2004 -Đề số 12Câu 1 ( 2 điểm ) 1 2 Cho hàm số : y = x 2 1) Nêu tập xác định , chiều biến thiên và vẽ đồ thi của hàm số. 2) Lập phơng trình đờng thẳng đi qua điểm ( 2 , -6 ) có hệ số góc a và tiếp xúc với đồ thị hàm số trên .Câu 2 ( 3 điểm ) Cho phơng trình : x2 – mx + m – 1 = 0 . 1) Gọi hai nghiệm của phơng trình là x1 , x2 . Tính giá trị của biểu thức . x12 x2 1 2 M . Từ đó tìm m để M > 0 . x12 x 2 x1 x 2 2 2) Tìm giá trị của m để biểu thức P = x12 x22 1 đạt giá trị nhỏ nhất .Câu 3 ( 2 điểm ) Giải phơng trình : a) x4 4 x b) 2 x 3 3 xCâu 4 ( 3 điểm ) Cho hai đờng tròn (O1) và (O2) có bán kính bằng R cắt nhau tại A và B , quaA vẽ cát tuyến cắt hai đờng tròn (O1) và (O2) thứ tự tại E và F , đờng thẳng EC ,DF cắt nhau tại P . 1) Chứng minh rằng : BE = BF . 2) Một cát tuyến qua A và vuông góc với AB cắt (O1) và (O2) lần lợt tại C,D . Chứng minh tứ giác BEPF , BCPD nội tiếp và BP vuông góc với EF . 3) Tính diện tích phần giao nhau của hai đờng tròn khi AB = R .Đề số 13Câu 1 ( 3 điểm ) 1) Giải bất phơng trình : x 2 x 4 2) Tìm giá trị nguyên lớn nhất của x thoả mãn . 2 x 1 3x 1 1 3 2Câu 2 ( 2 điểm ) Cho phơng trình : 2x2 – ( m+ 1 )x +m – 1 = 0 a) Giải phơng trình khi m = 1 . b) Tìm các giá trị của m để hiệu hai nghiệm bằng tích của chúng .Câu3 ( 2 điểm ) Cho hàm số : y = ( 2m + 1 )x – m + 3 (1) a) Tìm m biết đồ thị hàm số (1) đi qua điểm A ( -2 ; 3 ) . b) Tìm điểm cố định mà đồ thị hàm số luôn đi qua với mọi giá trị của m .Câu 4 ( 3 điểm ) Cho góc vuông xOy , trên Ox , Oy lần lợt lấy hai điểm A và B sao cho OA= OB . M là một điểm bất kỳ trên AB . Dựng đờng tròn tâm O1 đi qua M và tiếp xúc với Ox tại A , đờng tròn tâmO2 đi qua M và tiếp xúc với Oy tại B , (O1) cắt (O2) tại điểm thứ hai N . 1) Chứng minh tứ giác OANB là tứ giác nội tiếp và ON là phân giác của góc ANB . 2) Chứng minh M nằm trên một cung tròn cố định khi M thay đổi . 3) Xác định vị trí của M để khoảng cách O1O2 là ngắn nhất .
Nội dung trích xuất từ tài liệu:
Đề thi tuyển sinh lớp 10 năm 2004 Đề thi tuyển sinh lớp 10 năm 2004 -Đề số 12Câu 1 ( 2 điểm ) 1 2 Cho hàm số : y = x 2 1) Nêu tập xác định , chiều biến thiên và vẽ đồ thi của hàm số. 2) Lập phơng trình đờng thẳng đi qua điểm ( 2 , -6 ) có hệ số góc a và tiếp xúc với đồ thị hàm số trên .Câu 2 ( 3 điểm ) Cho phơng trình : x2 – mx + m – 1 = 0 . 1) Gọi hai nghiệm của phơng trình là x1 , x2 . Tính giá trị của biểu thức . x12 x2 1 2 M . Từ đó tìm m để M > 0 . x12 x 2 x1 x 2 2 2) Tìm giá trị của m để biểu thức P = x12 x22 1 đạt giá trị nhỏ nhất .Câu 3 ( 2 điểm ) Giải phơng trình : a) x4 4 x b) 2 x 3 3 xCâu 4 ( 3 điểm ) Cho hai đờng tròn (O1) và (O2) có bán kính bằng R cắt nhau tại A và B , quaA vẽ cát tuyến cắt hai đờng tròn (O1) và (O2) thứ tự tại E và F , đờng thẳng EC ,DF cắt nhau tại P . 1) Chứng minh rằng : BE = BF . 2) Một cát tuyến qua A và vuông góc với AB cắt (O1) và (O2) lần lợt tại C,D . Chứng minh tứ giác BEPF , BCPD nội tiếp và BP vuông góc với EF . 3) Tính diện tích phần giao nhau của hai đờng tròn khi AB = R .Đề số 13Câu 1 ( 3 điểm ) 1) Giải bất phơng trình : x 2 x 4 2) Tìm giá trị nguyên lớn nhất của x thoả mãn . 2 x 1 3x 1 1 3 2Câu 2 ( 2 điểm ) Cho phơng trình : 2x2 – ( m+ 1 )x +m – 1 = 0 a) Giải phơng trình khi m = 1 . b) Tìm các giá trị của m để hiệu hai nghiệm bằng tích của chúng .Câu3 ( 2 điểm ) Cho hàm số : y = ( 2m + 1 )x – m + 3 (1) a) Tìm m biết đồ thị hàm số (1) đi qua điểm A ( -2 ; 3 ) . b) Tìm điểm cố định mà đồ thị hàm số luôn đi qua với mọi giá trị của m .Câu 4 ( 3 điểm ) Cho góc vuông xOy , trên Ox , Oy lần lợt lấy hai điểm A và B sao cho OA= OB . M là một điểm bất kỳ trên AB . Dựng đờng tròn tâm O1 đi qua M và tiếp xúc với Ox tại A , đờng tròn tâmO2 đi qua M và tiếp xúc với Oy tại B , (O1) cắt (O2) tại điểm thứ hai N . 1) Chứng minh tứ giác OANB là tứ giác nội tiếp và ON là phân giác của góc ANB . 2) Chứng minh M nằm trên một cung tròn cố định khi M thay đổi . 3) Xác định vị trí của M để khoảng cách O1O2 là ngắn nhất .
Tìm kiếm theo từ khóa liên quan:
tham số bảng biến thiên mặt phẳng tọa độ đề thi học sinh giỏi môn toán đề toán phân ban.Tài liệu có liên quan:
-
Bộ đề thi học sinh giỏi môn Toán lớp 9 năm 2017-2018 có đáp án
82 trang 278 0 0 -
Tạo bảng biến thiên chuyển đổi tự động cho các hàm đa thức trong Geogebra
13 trang 108 0 0 -
54 trang 72 0 0
-
Bộ đề thi học sinh giỏi môn Toán lớp 9 năm 2018-2019 có đáp án
60 trang 49 0 0 -
Bộ đề thi học sinh giỏi môn Toán lớp 8 năm 2017-2018 có đáp án
35 trang 48 0 0 -
Bộ đề thi học sinh giỏi cấp huyện môn Toán lớp 9 năm 2018-2019 có đáp án
36 trang 47 0 0 -
Đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 9 năm 2022-2023 - Phòng GD&ĐT TP. PR-TC, Ninh Thuận
1 trang 44 0 0 -
Tạo bảng biến thiên chuyển đổi tự động cho các hàm phân thức trong Geogebra
12 trang 42 0 0 -
Đề thi học kì 1 môn Toán lớp 7 năm 2023-2024 có đáp án - Trường THCS An Phú (Đề tham khảo)
4 trang 41 2 0 -
Đề thi học sinh giỏi giải Toán trên máy tính cầm tay cấp tỉnh năm 2022-2023 - Sở GD&ĐT Sóc Trăng
2 trang 41 0 0