Đề toán tuyển sinh lớp 10 của các tỉnh Đề 5
Số trang: 5
Loại file: pdf
Dung lượng: 196.66 KB
Lượt xem: 25
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Tham khảo đề thi - kiểm tra đề toán tuyển sinh lớp 10 của các tỉnh đề 5, tài liệu phổ thông, toán học phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Nội dung trích xuất từ tài liệu:
Đề toán tuyển sinh lớp 10 của các tỉnh Đề 5 [www.VIETMATHS.com]SỞ GIÁO DỤC VÀ ĐÀO TẠO KÌ THI TUYỂN SINH LỚP THPT BÌNH DƯƠNG Năm học 2012 – 2013 §Ò chÝnh thøc Môn thi: Toán Thời gian làm bài: 120 phút (Không kể thời gian phát đề) 2 3Bài 1 (1 điểm): Cho biểu thức: A = 50 x 8x 5 4 1/ Rút gọn biểu thức A 2/ Tính giá trị của x khi A = 1Bài 2 (1,5 điểm): x21/ Vẽ đồ thị (P) hàm số y = 22/ Xác định m để đường thẳng (d): y = x – m cắt (P) tại điểm A có hoành độ bằng 1. Tìm tung độ của điểm ABài 3 (2 điểm): 2 x y 4 1/ Giải hệ phương trình: 3 x y 3 2/ Giải phương trình: x4 + x2 – 6 = 0Bài 4 (2 điểm): Cho phương trình x2 – 2mx – 2m – 5 = 0 (m là tham số) 1/ Chứng minh rằng phương trình luôn có hai nghiệm phân biệt với mọi giá trị của m 2/ Tìm m để x1 x2 đạt giá trị nhỏ nhất (x1; x2 là hai nghiệm của phương trình)Bài 5 (3,5 điểm): Cho đường tròn (O) và điểm M ở ngoài đường tròn. Qua M kẻ các tiếp tuyến MA, MB và cáttuyến MPQ (MP < MQ). Gọi I là trung điểm của dây PQ, E là giao điểm thứ 2 giữa đường thẳng BI và đườngtròn (O). Chứng minh: 1/ Tứ giác BOIM nội tiếp. Xác định tâm của đường tròn ngoại tiếp tứ giác đó 2/ BOM = BEA 3/ AE // PQ 4/ Ba điểm O; I; K thẳng hàng, với K là trung điểm của EA HƯỚNG DẪN GIẢI: Nội dung Bài 1 (1 điểm): 1/ ĐKXĐ: x 0 2 3 A= 50 x 8x 5 4Trần Hải Nam - Tell: 01662 843844 – TT luyện thi Tầm Cao Mới Tell: 01684 356573 – 0533564384 – 0536513844 – 0944323844 1 [www.VIETMATHS.com] 2 3 = 25.2 x 4.2 x 5 4 3 = 2 2x 2x 2 1 = 2x 2 1 Vậy với x 0 thi A = 2x 2 1 2/ Khi A = 1 2x = 1 2 2x = 2 2x = 4 x = 2 (Thỏa điều kiện xác định) Vậy khi A = 1 giá trị của x = 2 Bài 2 (1,5 điểm): x2 1/ Vẽ đồ thị (P) hàm số y = 2 -Bảng giá trị x -4 -2 0 2 4 2 x y= 8 2 0 2 8 2 -Đồ thị (P) là đường parabol đỉnh O(0; 0) nằm phía trên trục hoành, nhận trục tung làm trục đối xứng và đi qua các điểm có tọa độ cho trong bảng trên. 2/ Cách 1. Vì (d) cắt (P) tại điểm A có hoành độ bằng 1 nên x = 1 thỏa mãn công thức hàm số (P) => Tung độ của điểm 12 1 A là: yA = = 2 2 1 1 A(1; ) (d) nên =1–m 2 2 1 1 m=1– = 2 2 1 1 Vậy với m = thì (d): y = x – m cắt P tại điểm A có hoành độ bằng 1. Khi đó tung độ yA = 2 2 Cách 2 Ta có phương trình hoành độ giao điểm của (d) và (P) là:Trần Hải Nam - Tell: 01662 843844 – TT luyện thi Tầm Cao Mới Tell: 01684 356573 – 0533564384 – 0536513844 – 0944323844 2 [www.VIETMATHS.com] x2 = x – m x2 – 2x + 2m = 0 (*) 2 Để (d) cắt (P) tại điểm A có hoành độ bằng 1 thì phương trình (*) có nghiệm bằng 1 1 12 – 2.1 + 2m = 0 m = 2 1 12 1 Vậy với m = thì (d): y = x – m cắt P tại điểm A có hoành độ bằng 1. Khi đó tung độ yA = = 2 2 2 Bài 3 (2 điểm): 1/ Giải hệ phương trình 2 x y 4 x 1 x 1 x 1 3 x y 3 3 x y 3 3.(1) y 3 y 6 Vậy hệ phương trình có nghiệm duy nhất (-1; -6) 2/ Giải phương trình x4 + x2 – 6 = 0 (1) 2 Đặt x = t (t 0) Phương trình (1) trở thành: t2 + t – 6 = 0 (2) Ta có = 12 – 4.1.(-6) = 25 1 25 1 25 Phương trình (2) có hai nghiệm t1 = = 2 (nhận) ; t2 = = -3 (loại) 2.1 2.1 Với t = t1 = 2 => x2 = 2 x = 2 Vậy phương trình đã cho có hai nghiệm x1 = 2 ; x2 = - 2 Bài 4 (2 điểm): Cho phương trình x2 – 2mx – 2m – 5 = 0 (m là tham số) 1/ Ta có ’ = (-m)2 – 1 (-2m – 5) = m2 + 2m + 5 = (m + 1)2 + 4 2 Vì (m + 1) 0 với mọi m (m + 1)2 + 4 > 0 với mọi m Hay ’ > ...
Nội dung trích xuất từ tài liệu:
Đề toán tuyển sinh lớp 10 của các tỉnh Đề 5 [www.VIETMATHS.com]SỞ GIÁO DỤC VÀ ĐÀO TẠO KÌ THI TUYỂN SINH LỚP THPT BÌNH DƯƠNG Năm học 2012 – 2013 §Ò chÝnh thøc Môn thi: Toán Thời gian làm bài: 120 phút (Không kể thời gian phát đề) 2 3Bài 1 (1 điểm): Cho biểu thức: A = 50 x 8x 5 4 1/ Rút gọn biểu thức A 2/ Tính giá trị của x khi A = 1Bài 2 (1,5 điểm): x21/ Vẽ đồ thị (P) hàm số y = 22/ Xác định m để đường thẳng (d): y = x – m cắt (P) tại điểm A có hoành độ bằng 1. Tìm tung độ của điểm ABài 3 (2 điểm): 2 x y 4 1/ Giải hệ phương trình: 3 x y 3 2/ Giải phương trình: x4 + x2 – 6 = 0Bài 4 (2 điểm): Cho phương trình x2 – 2mx – 2m – 5 = 0 (m là tham số) 1/ Chứng minh rằng phương trình luôn có hai nghiệm phân biệt với mọi giá trị của m 2/ Tìm m để x1 x2 đạt giá trị nhỏ nhất (x1; x2 là hai nghiệm của phương trình)Bài 5 (3,5 điểm): Cho đường tròn (O) và điểm M ở ngoài đường tròn. Qua M kẻ các tiếp tuyến MA, MB và cáttuyến MPQ (MP < MQ). Gọi I là trung điểm của dây PQ, E là giao điểm thứ 2 giữa đường thẳng BI và đườngtròn (O). Chứng minh: 1/ Tứ giác BOIM nội tiếp. Xác định tâm của đường tròn ngoại tiếp tứ giác đó 2/ BOM = BEA 3/ AE // PQ 4/ Ba điểm O; I; K thẳng hàng, với K là trung điểm của EA HƯỚNG DẪN GIẢI: Nội dung Bài 1 (1 điểm): 1/ ĐKXĐ: x 0 2 3 A= 50 x 8x 5 4Trần Hải Nam - Tell: 01662 843844 – TT luyện thi Tầm Cao Mới Tell: 01684 356573 – 0533564384 – 0536513844 – 0944323844 1 [www.VIETMATHS.com] 2 3 = 25.2 x 4.2 x 5 4 3 = 2 2x 2x 2 1 = 2x 2 1 Vậy với x 0 thi A = 2x 2 1 2/ Khi A = 1 2x = 1 2 2x = 2 2x = 4 x = 2 (Thỏa điều kiện xác định) Vậy khi A = 1 giá trị của x = 2 Bài 2 (1,5 điểm): x2 1/ Vẽ đồ thị (P) hàm số y = 2 -Bảng giá trị x -4 -2 0 2 4 2 x y= 8 2 0 2 8 2 -Đồ thị (P) là đường parabol đỉnh O(0; 0) nằm phía trên trục hoành, nhận trục tung làm trục đối xứng và đi qua các điểm có tọa độ cho trong bảng trên. 2/ Cách 1. Vì (d) cắt (P) tại điểm A có hoành độ bằng 1 nên x = 1 thỏa mãn công thức hàm số (P) => Tung độ của điểm 12 1 A là: yA = = 2 2 1 1 A(1; ) (d) nên =1–m 2 2 1 1 m=1– = 2 2 1 1 Vậy với m = thì (d): y = x – m cắt P tại điểm A có hoành độ bằng 1. Khi đó tung độ yA = 2 2 Cách 2 Ta có phương trình hoành độ giao điểm của (d) và (P) là:Trần Hải Nam - Tell: 01662 843844 – TT luyện thi Tầm Cao Mới Tell: 01684 356573 – 0533564384 – 0536513844 – 0944323844 2 [www.VIETMATHS.com] x2 = x – m x2 – 2x + 2m = 0 (*) 2 Để (d) cắt (P) tại điểm A có hoành độ bằng 1 thì phương trình (*) có nghiệm bằng 1 1 12 – 2.1 + 2m = 0 m = 2 1 12 1 Vậy với m = thì (d): y = x – m cắt P tại điểm A có hoành độ bằng 1. Khi đó tung độ yA = = 2 2 2 Bài 3 (2 điểm): 1/ Giải hệ phương trình 2 x y 4 x 1 x 1 x 1 3 x y 3 3 x y 3 3.(1) y 3 y 6 Vậy hệ phương trình có nghiệm duy nhất (-1; -6) 2/ Giải phương trình x4 + x2 – 6 = 0 (1) 2 Đặt x = t (t 0) Phương trình (1) trở thành: t2 + t – 6 = 0 (2) Ta có = 12 – 4.1.(-6) = 25 1 25 1 25 Phương trình (2) có hai nghiệm t1 = = 2 (nhận) ; t2 = = -3 (loại) 2.1 2.1 Với t = t1 = 2 => x2 = 2 x = 2 Vậy phương trình đã cho có hai nghiệm x1 = 2 ; x2 = - 2 Bài 4 (2 điểm): Cho phương trình x2 – 2mx – 2m – 5 = 0 (m là tham số) 1/ Ta có ’ = (-m)2 – 1 (-2m – 5) = m2 + 2m + 5 = (m + 1)2 + 4 2 Vì (m + 1) 0 với mọi m (m + 1)2 + 4 > 0 với mọi m Hay ’ > ...
Tìm kiếm theo từ khóa liên quan:
đề thi môn toán 6 đề thi học sinh giỏi đề thi khảo sát ôn thi học sinh giỏi lớp tài liệu luyện học sinh giỏi đề chọn học sinh giỏiTài liệu có liên quan:
-
8 trang 423 0 0
-
Bộ đề thi học sinh giỏi môn Lịch sử lớp 12 cấp tỉnh năm 2020-2021 có đáp án
26 trang 397 0 0 -
7 trang 366 0 0
-
Đề thi học sinh giỏi môn GDCD lớp 12 năm 2023-2024 có đáp án - Trường THPT Mai Anh Tuấn, Thanh Hóa
28 trang 323 0 0 -
8 trang 317 0 0
-
Đề thi học sinh giỏi môn Ngữ văn lớp 6 năm 2022-2023 có đáp án - Trường THCS Ninh An
8 trang 301 0 0 -
Đề thi học sinh giỏi cấp tỉnh môn Vật lý THPT năm 2023-2024 có đáp án - Sở GD&ĐT Vĩnh Long
6 trang 290 0 0 -
8 trang 284 0 0
-
Ebook Bồi dưỡng học sinh giỏi Tiếng Anh lớp 5 theo chuyên đề
138 trang 284 0 0 -
Đề thi học sinh giỏi môn Ngữ văn lớp 8 năm 2021-2022 có đáp án - Phòng GD&ĐT Châu Đức
4 trang 251 0 0