Detection of self-reported experiences with corruption on twitter using unsupervised machine learning
Số trang: 13
Loại file: pdf
Dung lượng: 1.50 MB
Lượt xem: 18
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
In this study, we deployed an unsupervised machine learning methodology using natural language processing to collect and analyze data from the popular social media platform Twitter with the aims of detecting self-reported experiences with corruption, including in the health sector.
Nội dung trích xuất từ tài liệu:
Detection of self-reported experiences with corruption on twitter using unsupervised machine learning
Nội dung trích xuất từ tài liệu:
Detection of self-reported experiences with corruption on twitter using unsupervised machine learning
Tìm kiếm theo từ khóa liên quan:
Social sciences and humanities Self-reported experiences Corruption on twitter Unsupervised machine learning Natural language processingTài liệu có liên quan:
-
Ebook Machine learning algorithms: Part 2
184 trang 49 0 0 -
Bài giảng Xử lý ngôn ngữ tự nhiên (Natural Language Processing): Bài 7.3 - Lê Thanh Hương
4 trang 39 0 0 -
Modern approaches in natural language processing
25 trang 38 0 0 -
Ebook Computational linguistics: Models, resources, applications
198 trang 34 0 0 -
Bài giảng Xử lý ngôn ngữ tự nhiên (Natural Language Processing): Bài 6 - Lê Thanh Hương
12 trang 31 0 0 -
11 trang 30 0 0
-
Research on deep learning and its application in stock price prediction
11 trang 29 0 0 -
117 trang 29 0 0
-
287 trang 28 0 0
-
A new approach for video concept detection based on user comments
21 trang 28 0 0