Efficient multi-person action recognition using YOLOv7-pose and deep learning models
Số trang: 5
Loại file: pdf
Dung lượng: 390.36 KB
Lượt xem: 1
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
This paper comprehensively explores and compares methods for multi-person action recognition, with a focus on integrating YOLOv7-Pose a tool known for its rapid pose estimation capabilities--with deep learning architectures. Specifically, it examines the use of Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU) and Spatial TemporalGraph Convolution Network (ST-GCN) to achieve precise action classification.
Nội dung trích xuất từ tài liệu:
Efficient multi-person action recognition using YOLOv7-pose and deep learning models
Nội dung trích xuất từ tài liệu:
Efficient multi-person action recognition using YOLOv7-pose and deep learning models
Tìm kiếm theo từ khóa liên quan:
Deep learning Multi-person action recognition YOLOv7-Pose Spatial TemporalGraph Convolution Network Gated Recurrent Unit Long Short-Term MemoryTài liệu có liên quan:
-
8 trang 235 0 0
-
Application of convolutional neural network for detecting concrete cracks
4 trang 44 0 0 -
The combination of face identification and action recognition for fall detection
8 trang 42 0 0 -
Improving hand posture recognition performance using multi-modalities
10 trang 40 0 0 -
Phương pháp cải tiến LSTM dựa trên đặc trưng thống kê trong phát hiện DGA botnet
10 trang 39 0 0 -
An ontology-based sentiment analysis ap-proach to discovering hidden affected objects
5 trang 39 0 0 -
11 trang 38 0 0
-
Modern approaches in natural language processing
25 trang 38 0 0 -
8 trang 37 0 0
-
91 trang 35 0 0