Estimation of shale volume from well logging data using Artificial Neural Network
Số trang: 7
Loại file: pdf
Dung lượng: 955.91 KB
Lượt xem: 35
Lượt tải: 0
Xem trước 1 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
The existence of shale has a major effect on reservoir quality because it reduces the rock’s both the porosity and permeability. There are several types of shale, and they can be distributed in the sand in four different ways: laminated, structural, dispersed, or any combination of these. Each of them has various features and physical properties. Therefore, shale volume estimation is one ofthemostimportant and challengin tasksto be solved information evaluation. There are many equations proposed to calculate shale volume from Gamma - ray log; however, none of them couldbe considered thebestmethodthat can be applied to all case studies. Thisstudy aimsto propose a new approach to estimate shale volume from well - logging data. Gamma - ray and other logs were used as input data for an artificial neural network (ANN) to predict the shale volume
Nội dung trích xuất từ tài liệu:
Estimation of shale volume from well logging data using Artificial Neural Network
Nội dung trích xuất từ tài liệu:
Estimation of shale volume from well logging data using Artificial Neural Network
Tìm kiếm theo từ khóa liên quan:
Neural network Volume of shale Well logging Shale volume from well logging data Physical propertiesTài liệu có liên quan:
-
Effect of real-time price on short-term load forecasting
8 trang 38 0 0 -
Advanced Computer Networks: Lecture 11 - Dr. Amir Qayyum
26 trang 36 0 0 -
Xác định hematocrit sử dụng mạng neural được huấn luyện online dựa trên máy học cực độ
8 trang 35 0 0 -
A new approach for continous learning
5 trang 33 0 0 -
Salt origin and their saltiness: A time-intensity sensory characterization
11 trang 32 0 0 -
Confirmed detection of lithium in nearby young late-M dwarfs
8 trang 30 0 0 -
Bài giảng Máy học nâng cao: Giới thiệu - Trịnh Tấn Đạt
41 trang 29 0 0 -
Ebook Low-cost veterinary clinical diagnostics: Part 2
181 trang 29 0 0 -
Develop a model for fabric defect prognostic and classification
4 trang 26 0 0 -
Mobile robot localization using fuzzy neural network based extended kalman filter
13 trang 25 0 0