Evaluation of word embedding techniques for the Vietnamese SMS spam detection model
Số trang: 5
Loại file: pdf
Dung lượng: 370.79 KB
Lượt xem: 11
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
This paper investigates the impact of word embedding techniques on enhancing SMS spam detection models. Traditional statistical methods (BoW, TF-IDF) are compared with advanced techniques (Word2Vec, fastText, GloVe, PhoBERT) using a proprietary dataset.
Nội dung trích xuất từ tài liệu:
Evaluation of word embedding techniques for the Vietnamese SMS spam detection model
Nội dung trích xuất từ tài liệu:
Evaluation of word embedding techniques for the Vietnamese SMS spam detection model
Tìm kiếm theo từ khóa liên quan:
Vietnamese SMS spam Word embedding Deep learning Proprietary dataset Bag-of-Words Term Frequency-Inverse Document FrequencyTài liệu có liên quan:
-
8 trang 235 0 0
-
Application of convolutional neural network for detecting concrete cracks
4 trang 44 0 0 -
Improving hand posture recognition performance using multi-modalities
10 trang 40 0 0 -
11 trang 38 0 0
-
Modern approaches in natural language processing
25 trang 38 0 0 -
8 trang 37 0 0
-
91 trang 35 0 0
-
8 trang 35 0 0
-
Research on traffic congestion detection from camera images in a location of Da Lat
13 trang 34 0 0 -
7 trang 33 0 0