Giáo án Giải tích 12 (Chương trình chuẩn)
Số trang: 134
Loại file: pdf
Dung lượng: 2.65 MB
Lượt xem: 15
Lượt tải: 0
Xem trước 10 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Giáo án Giải tích 12 biên soạn dựa trên chương trình chuẩn thông tin đến các bạn các nội dung: ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số; nguyên hàm – tích phân và ứng dụng; nguyên hàm – tích phân và ứng dụng; số phức.
Nội dung trích xuất từ tài liệu:
Giáo án Giải tích 12 (Chương trình chuẩn)Trường THPT Nà Chì năm học 2011 - 2012 Giáo án Giải tích 12 chuẩn Ngày dạy Tiết dạy Lớp dạy Tên HS vắng mặt 12A1 12A3 Chương I: ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ HÀM SỐTiết dạy: 01 Bài 1: SỰ ĐỒNG BIẾN, NGHỊCH BIẾN CỦA HÀM SỐI. MỤC TIÊU: Kiến thức: Hiểu định nghĩa của sự đồng biến, nghịch biến của hàm số và mối liên hệ giữa khái niệm này với đạo hàm. Nắm được qui tắc xét tính đơn điệu của hàm số. Kĩ năng: Biết vận dụng qui tắc xét tính đơn điệu của một hàm số và dấu đạo hàm của nó. Thái độ: Rèn luyện tính cẩn thận, chính xác. Tư duy các vấn đề toán học một cách lôgic và hệ thống.II. CHUẨN BỊ: Giáo viên: Giáo án. Hình vẽ minh hoạ. Học sinh: SGK, vở ghi. Ôn tập các kiến thức đã học về đạo hàm ở lớp 11.III. HOẠT ĐỘNG DẠY HỌC: 1. Ổn định tổ chức: Kiểm tra sĩ số lớp. 2. Kiểm tra bài cũ: (5) x2 1 H. Tính đạo hàm của các hàm số: a) y , b) y . Xét dấu đạo hàm của các hàm số đó? 2 x 1 Đ. a) y x b) y . x2 3. Giảng bài mới: Hoạt động của Giáo viên Hoạt động của Học sinh Nội dung Hoạt động 1: Nhắc lại các kiến thức liên quan tới tính đơn điệu của hàm số y I. Tính đơn điệu của hàm số 5 1. Nhắc lại định nghĩa Dựa vào KTBC, cho HS Giả sử hàm số y = f(x) xácnhận xét dựa vào đồ thị của các định trên K. x y = f(x) đồng biến trên K -8 -6 -4 -2 2 4 6 8hàm số. -5 x1, x2 K: x1 < x2 f(x1) < f(x2) f ( x1 ) f ( x2 )H1. Hãy chỉ ra các khoảng Đ1. 0, x1 x2đồng biến, nghịch biến của các x2 y đồng biến trên (–∞; x1,x2 K (x1 x2)hàm số đã cho? 2 0), nghịch biến trên (0; +∞) y = f(x) nghịch biến trên K 1 x1, x2 K: x1 < x2 y nghịch biến trên (–∞; 0), x f(x1) > f(x2) (0; +∞) f ( x1 ) f ( x2 )H2. Nhắc lại định nghĩa tính 0,đơn điệu của hàm số? x1 x2 x1,x2 K (x1 x2)GV: Phạm Việt Phương 1Trường THPT Nà Chì năm học 2011 - 2012 Giáo án Giải tích 12 chuẩnH3. Nhắc lại phương pháp xéttính đơn điệu của hàm số đãbiết? Đ4. y > 0 HS đồng biếnH4. Nhận xét mối liên hệ giữa y < 0 HS nghịch biếnđồ thị của hàm số và tính đơn yđiệu của hàm số? Nhận xét: GV hướng dẫn HS nêu nhận Đồ thị của hàm số đồng biến xxét về đồ thị của hàm số. trên K là một đường đi lên từ O trái sang phải. y Đồ thị của hàm số nghịch ...
Nội dung trích xuất từ tài liệu:
Giáo án Giải tích 12 (Chương trình chuẩn)Trường THPT Nà Chì năm học 2011 - 2012 Giáo án Giải tích 12 chuẩn Ngày dạy Tiết dạy Lớp dạy Tên HS vắng mặt 12A1 12A3 Chương I: ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ HÀM SỐTiết dạy: 01 Bài 1: SỰ ĐỒNG BIẾN, NGHỊCH BIẾN CỦA HÀM SỐI. MỤC TIÊU: Kiến thức: Hiểu định nghĩa của sự đồng biến, nghịch biến của hàm số và mối liên hệ giữa khái niệm này với đạo hàm. Nắm được qui tắc xét tính đơn điệu của hàm số. Kĩ năng: Biết vận dụng qui tắc xét tính đơn điệu của một hàm số và dấu đạo hàm của nó. Thái độ: Rèn luyện tính cẩn thận, chính xác. Tư duy các vấn đề toán học một cách lôgic và hệ thống.II. CHUẨN BỊ: Giáo viên: Giáo án. Hình vẽ minh hoạ. Học sinh: SGK, vở ghi. Ôn tập các kiến thức đã học về đạo hàm ở lớp 11.III. HOẠT ĐỘNG DẠY HỌC: 1. Ổn định tổ chức: Kiểm tra sĩ số lớp. 2. Kiểm tra bài cũ: (5) x2 1 H. Tính đạo hàm của các hàm số: a) y , b) y . Xét dấu đạo hàm của các hàm số đó? 2 x 1 Đ. a) y x b) y . x2 3. Giảng bài mới: Hoạt động của Giáo viên Hoạt động của Học sinh Nội dung Hoạt động 1: Nhắc lại các kiến thức liên quan tới tính đơn điệu của hàm số y I. Tính đơn điệu của hàm số 5 1. Nhắc lại định nghĩa Dựa vào KTBC, cho HS Giả sử hàm số y = f(x) xácnhận xét dựa vào đồ thị của các định trên K. x y = f(x) đồng biến trên K -8 -6 -4 -2 2 4 6 8hàm số. -5 x1, x2 K: x1 < x2 f(x1) < f(x2) f ( x1 ) f ( x2 )H1. Hãy chỉ ra các khoảng Đ1. 0, x1 x2đồng biến, nghịch biến của các x2 y đồng biến trên (–∞; x1,x2 K (x1 x2)hàm số đã cho? 2 0), nghịch biến trên (0; +∞) y = f(x) nghịch biến trên K 1 x1, x2 K: x1 < x2 y nghịch biến trên (–∞; 0), x f(x1) > f(x2) (0; +∞) f ( x1 ) f ( x2 )H2. Nhắc lại định nghĩa tính 0,đơn điệu của hàm số? x1 x2 x1,x2 K (x1 x2)GV: Phạm Việt Phương 1Trường THPT Nà Chì năm học 2011 - 2012 Giáo án Giải tích 12 chuẩnH3. Nhắc lại phương pháp xéttính đơn điệu của hàm số đãbiết? Đ4. y > 0 HS đồng biếnH4. Nhận xét mối liên hệ giữa y < 0 HS nghịch biếnđồ thị của hàm số và tính đơn yđiệu của hàm số? Nhận xét: GV hướng dẫn HS nêu nhận Đồ thị của hàm số đồng biến xxét về đồ thị của hàm số. trên K là một đường đi lên từ O trái sang phải. y Đồ thị của hàm số nghịch ...
Tìm kiếm theo từ khóa liên quan:
Giáo án Giải tích 12 Giải tích 12 Tích phân và ứng dụng Ứng dụng đạo hàm Vẽ đồ thị hàm số Nguyên hàm – tích phânTài liệu có liên quan:
-
7 trang 187 0 0
-
Đề thi chọn đội tuyển HSG Quốc gia THPT môn Toán năm 2022-2023 - Sở GD&ĐT Bến Tre
1 trang 88 0 0 -
Giáo án Toán lớp 10: Chương 2 - Hàm số và đồ thị
41 trang 86 0 0 -
Đề cương ôn tập học kì 2 môn Toán lớp 10 năm 2022-2023 - Trường THPT Hai Bà Trưng, TT Huế
7 trang 76 0 0 -
35 trang 56 0 0
-
Đề thi thử tốt nghiệp THPT môn Toán năm 2023-2024 có đáp án (Lần 2) - Trường THPT Lục Ngạn Số 1
8 trang 55 0 0 -
Giáo án Đại số 12 bài 2: Cực trị của hàm số
104 trang 51 0 0 -
9 trang 48 0 0
-
Đề cương ôn tập học kì 2 môn Toán lớp 11 năm 2022-2023 - Trường THPT Xuân Đỉnh, Hà Nội
16 trang 48 0 0 -
Đề thi học sinh giỏi cấp tỉnh môn Toán lớp 12 năm 2023-2024 - Sở GD&ĐT Bà Rịa - Vũng Tàu
1 trang 45 0 0