GiáotrìnhHìnhhọc đại số- Ngô Bảo Châu
Số trang: 176
Loại file: pdf
Dung lượng: 1,016.61 KB
Lượt xem: 23
Lượt tải: 0
Xem trước 10 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Giáo trình Hình học đại số nhằm giúp bạn đọc nắm được cách tính toán cụ thể trong một số trường hợp cụ thể và hiểu được nội dung của định lý thông qua các tính toán. Nội dung giáo trình gồm các kiến thức cơ bản sau: đại số, lược đồ, bó mođun, chiều và chuẩn hóa, hình học xạ ảnh và đối đồng đều. Mời bạn đọc tham khảo.
Nội dung trích xuất từ tài liệu:
Giáo trình Hình học đại số - Ngô Bảo Châu Giáo trình hình học đại số Ngô Bảo Châu Tháng 8 năm 2003 Gi¡o tr¼nh h¼nh håc ¤i sè Ngæ B£o Ch¥u b£n th¡ng 8 n«m 2003 2 Líi mð ¦u Trong h¼nh håc ¤i sè, c¡c èi t÷ñng h¼nh håc ÷ñc mæ t£ b¬ng mët ngæn ngú ¤i sè thu¦n tuþ. B¶n ngo i trüc quan h¼nh håc v ¤i sè h¼nh thùc câ v´ èi lªp nhau, sü ph¡t triºn cõa h¼nh håc ¤i sè trong th¸ k 20 ¢ chùng minh i·u ng÷ñc l¤i : mët ngæn ngú ¤i sè phò hñp câ kh£ n«ng di¹n ¤t trüc quan h¼nh håc mët c¡ch r§t ch½nh x¡c. V o cuèi th¸ k 19 h¼nh håc ¤i sè ¢ ph¡t triºn m¤nh ð Italia vîi nhúnh t¶n tuèi nh÷ Castelnuovo hay Severi, g°t h¡i ÷ñc nhi·u k¸t qu£ µp ³ v· c¡c èi t÷ñng t÷ìng èi cö thº nh÷ ÷íng cong v m°t ¤i sè. Do thi¸u mët n·n t£ng ¤i sè vúng chc, c¡c nh to¡n håc Italia cán dòng nhi·u cæng cö gi£i t½ch v æi khi mc ph£i nhúng ngë nhªn h¼nh håc d¨n ¸n nhúng chùng minh khæng ¦y õ. Ph£i ¸n Zariski v Weil, ¤i sè giao ho¡n mîi trð th nh cæng cö ch½nh trong h¼nh håc ¤i sè. V o nhúng n«m giúa thªp k 20, h¼nh håc ¤i sè câ th¶m mët l¦n lët x¡c. Nhông ng÷íi i ti¶n phong trong giai o¤n n y l Serre v Grothendieck. Grothendieck sû döng lþ thuy¸t ph¤m trò v o h¼nh håc ¤i sè mët c¡ch câ h» thèng. Þ t÷ðng cõa æng coi a t¤p ¤i sè nh÷ mët h m tû l mët þ t÷ðng then chèt trong lþ thy¸t l÷ñc ç. Mët c¡i hay cõa ngæn ngú h¼nh håc ¤i sè l , m°c dò ph¤m trò v h m tû l nhúng kh¡i ni»m r§t trøu t÷ñng, nâ cho ph²p ta di¹n ¤t mët c¡ch trong s¡ng nhúng trüc quan h¼nh håc cö thº nh§t v thªt sü gióp ta hiºu th¶m v· nhúng èi t÷ñng cö thº v½ dö nh÷ ÷íng cong, m°t ... Nh÷ng â công çng thíi l c¡i khâ cho ng÷íi håc h¼nh håc ¤i sè v cho ng÷ái vi¸t gi¡o tr¼nh h¼nh håc ¤i sè. Xem c¡c gi¡o tr¼nh ti¸ng n÷îc ngo i ¢ câ, nêi ti¸ng nh¡t l c¡c cuèn cõa Hartshorne, Mumford, Shafarevich, ta th§y c¡c cuèn n y câ nëi dung r§t kh¡c nhau, h¦u nh÷ ½t câ ph¦n giao nhau. Ng÷íi vi¸t cuèn n y công ph£i lüa chån mët tuy¸n ÷íng ri¶ng, º d¨n dt b¤n åc tham quan xù sð di»u ký cõa h¼nh håc ¤i sè. Theo quan iºm s÷ ph¤m ri¶ng, tuy¸n ÷íng ÷ñc chån l c¡c ¤i lë ch½nh, câ thº khæng câ g¼ thªt ngo¤n möc, nh÷ng nâ gióp ta di xa hìn v câ thº tr¡nh cho ng÷íi tham quan câ c£m gi¡c bà l¤c ÷íng. Nëi dung quyºn gi¡o tr¼nh n y t§t nhi¶n khæng câ g¼ mîi. N¸u câ g¼ mîi th¼ nâ n¬m trong c¡ch tr¼nh b y v thù tü sp x¸p c¡c kh¡i ni»m. Trong tøng ph¦n ri¶ng r³, chc chn l ng÷íi vi¸t câ vay m÷ñn tø c¡c s¡ch ¢ câ, chõ y¸u tø cuèn cõa Hartshorne v cõa Mumford. Ng÷íi vi¸t công khæng h· ng¦n ng¤i l÷ñc bît i ho n to n mët sè chùng minh qu¡ rc rèi ho°c ch¿ tr¼nh b y chùng minh trong mët tr÷ìng hñp °c bi»t nh÷ng °c thò. C¡c 3 chùng minh chi ti¸t v ¦y õ th¼ b¤n åc n¸u c¦n câ thº tham kh£o s¡ch cõa Hartshorne. Ð ¥y, tæi ch¿ mong muèn b¤n åc n®m ÷ñc c¡ch t½nh to¡n cö thº trong mët sè tr÷ìng hñp cö thº v hiºu ÷ñc nëi dung cõa ành lþ thæng qua c¡c t½nh to¡n â. Ph¦n I ¤i sè 5 7 Möc ½ch cõa ch÷ìng n y l iºm l¤i mët sè kh¡i ni»m cì b£n cõa ¤i sè giao ho¡n v lþ thuy¸t ph¤m trò. T¡c gi£ khæng câ tham vång vi¸t ch÷ìng n y th nh mët t i li»u tham kh£o. Möc ½ch cõa nâ l iºm l¤i mët sè kh¡i ni»m cì b£n cõa ¤i sè giao ho¡n v lþ thuy¸t ph¤m trò m theo chõ quan cõa m¼nh, t¡c gi£ cho l khæng thi¸u ÷ñc cho ng÷íi bt ¦u håc h¼nh håc ¤i sè. Nhi·u chùng minh ch¿ ÷ñc tr¼nh b y vn tt, ho«c thªm ch½ bä qua. N¸u c£m th§y c¦n thi¸t, ng÷íi åc câ thº tham kh£o cuèn s¡ch kinh iºn v· ¤i sè giao ho¡n cõa Matsumura hay l cuèn cõa Atyah v Macdonald. Ta chó þ °c bi»t ¸n ph¤m trò c¡c v nh giao ho¡n v c¡c h m tû tø ph¤m trò n y v o ph¤m trò c¡c tªp hñp. Kh¡i ni»m àa ph÷ìng ho¡ trong ¤i sè giao ho¡n v kh¡i ni»m h m tû biºu di¹n ÷ñc cõa lþ thuy¸t ph¤m trò ÷ñc nh§n m¤nh. Ch÷ìng 1 Sì l÷ñc v· ¤i sè giao ho¡n 1.1 V nh giao ho¡n Trong tªp hñp c¡c sè nguy¶n Z ta câ hai ph²p to¡n cì b£n l ph²p cëng v ph²p nh¥n. C¡c ph²p to¡n n y thäa m¢n mët sè t½nh ch§t nh÷ t½nh giao ho¡n, t½nh k¸t hñp v t½nh ph¥n phèi. Ph²p cëng câ mët ph¦n tû ìn và l 0, ph²p nh¥n câ mët ph¦n tû ìn và l 1. V nh giao ho¡n l c§u tróc ¤i sè trøu t÷ñng, mæ phäng c¡c t½nh ch§t cõa ph²p cëng v ph²p nhn sè nguy¶n. ành ngh¾a 1 V nh giao ho¡n l mët tªp hñp R còng vîi (+, 0, ×, 1) tho£ m¢n - tªp R, còng vîi ph²p cëng + v ph¦n tû 0∈R l ph¦n tû ìn và èi vîi +, t¤o th nh mët nhâm Abel. -tªp R còng vîi ph²p nh¥n × v ph¦n tû 1∈R ìn và vîi ph²p ., t¤o th nh mët nûa nhâm ...
Nội dung trích xuất từ tài liệu:
Giáo trình Hình học đại số - Ngô Bảo Châu Giáo trình hình học đại số Ngô Bảo Châu Tháng 8 năm 2003 Gi¡o tr¼nh h¼nh håc ¤i sè Ngæ B£o Ch¥u b£n th¡ng 8 n«m 2003 2 Líi mð ¦u Trong h¼nh håc ¤i sè, c¡c èi t÷ñng h¼nh håc ÷ñc mæ t£ b¬ng mët ngæn ngú ¤i sè thu¦n tuþ. B¶n ngo i trüc quan h¼nh håc v ¤i sè h¼nh thùc câ v´ èi lªp nhau, sü ph¡t triºn cõa h¼nh håc ¤i sè trong th¸ k 20 ¢ chùng minh i·u ng÷ñc l¤i : mët ngæn ngú ¤i sè phò hñp câ kh£ n«ng di¹n ¤t trüc quan h¼nh håc mët c¡ch r§t ch½nh x¡c. V o cuèi th¸ k 19 h¼nh håc ¤i sè ¢ ph¡t triºn m¤nh ð Italia vîi nhúnh t¶n tuèi nh÷ Castelnuovo hay Severi, g°t h¡i ÷ñc nhi·u k¸t qu£ µp ³ v· c¡c èi t÷ñng t÷ìng èi cö thº nh÷ ÷íng cong v m°t ¤i sè. Do thi¸u mët n·n t£ng ¤i sè vúng chc, c¡c nh to¡n håc Italia cán dòng nhi·u cæng cö gi£i t½ch v æi khi mc ph£i nhúng ngë nhªn h¼nh håc d¨n ¸n nhúng chùng minh khæng ¦y õ. Ph£i ¸n Zariski v Weil, ¤i sè giao ho¡n mîi trð th nh cæng cö ch½nh trong h¼nh håc ¤i sè. V o nhúng n«m giúa thªp k 20, h¼nh håc ¤i sè câ th¶m mët l¦n lët x¡c. Nhông ng÷íi i ti¶n phong trong giai o¤n n y l Serre v Grothendieck. Grothendieck sû döng lþ thuy¸t ph¤m trò v o h¼nh håc ¤i sè mët c¡ch câ h» thèng. Þ t÷ðng cõa æng coi a t¤p ¤i sè nh÷ mët h m tû l mët þ t÷ðng then chèt trong lþ thy¸t l÷ñc ç. Mët c¡i hay cõa ngæn ngú h¼nh håc ¤i sè l , m°c dò ph¤m trò v h m tû l nhúng kh¡i ni»m r§t trøu t÷ñng, nâ cho ph²p ta di¹n ¤t mët c¡ch trong s¡ng nhúng trüc quan h¼nh håc cö thº nh§t v thªt sü gióp ta hiºu th¶m v· nhúng èi t÷ñng cö thº v½ dö nh÷ ÷íng cong, m°t ... Nh÷ng â công çng thíi l c¡i khâ cho ng÷íi håc h¼nh håc ¤i sè v cho ng÷ái vi¸t gi¡o tr¼nh h¼nh håc ¤i sè. Xem c¡c gi¡o tr¼nh ti¸ng n÷îc ngo i ¢ câ, nêi ti¸ng nh¡t l c¡c cuèn cõa Hartshorne, Mumford, Shafarevich, ta th§y c¡c cuèn n y câ nëi dung r§t kh¡c nhau, h¦u nh÷ ½t câ ph¦n giao nhau. Ng÷íi vi¸t cuèn n y công ph£i lüa chån mët tuy¸n ÷íng ri¶ng, º d¨n dt b¤n åc tham quan xù sð di»u ký cõa h¼nh håc ¤i sè. Theo quan iºm s÷ ph¤m ri¶ng, tuy¸n ÷íng ÷ñc chån l c¡c ¤i lë ch½nh, câ thº khæng câ g¼ thªt ngo¤n möc, nh÷ng nâ gióp ta di xa hìn v câ thº tr¡nh cho ng÷íi tham quan câ c£m gi¡c bà l¤c ÷íng. Nëi dung quyºn gi¡o tr¼nh n y t§t nhi¶n khæng câ g¼ mîi. N¸u câ g¼ mîi th¼ nâ n¬m trong c¡ch tr¼nh b y v thù tü sp x¸p c¡c kh¡i ni»m. Trong tøng ph¦n ri¶ng r³, chc chn l ng÷íi vi¸t câ vay m÷ñn tø c¡c s¡ch ¢ câ, chõ y¸u tø cuèn cõa Hartshorne v cõa Mumford. Ng÷íi vi¸t công khæng h· ng¦n ng¤i l÷ñc bît i ho n to n mët sè chùng minh qu¡ rc rèi ho°c ch¿ tr¼nh b y chùng minh trong mët tr÷ìng hñp °c bi»t nh÷ng °c thò. C¡c 3 chùng minh chi ti¸t v ¦y õ th¼ b¤n åc n¸u c¦n câ thº tham kh£o s¡ch cõa Hartshorne. Ð ¥y, tæi ch¿ mong muèn b¤n åc n®m ÷ñc c¡ch t½nh to¡n cö thº trong mët sè tr÷ìng hñp cö thº v hiºu ÷ñc nëi dung cõa ành lþ thæng qua c¡c t½nh to¡n â. Ph¦n I ¤i sè 5 7 Möc ½ch cõa ch÷ìng n y l iºm l¤i mët sè kh¡i ni»m cì b£n cõa ¤i sè giao ho¡n v lþ thuy¸t ph¤m trò. T¡c gi£ khæng câ tham vång vi¸t ch÷ìng n y th nh mët t i li»u tham kh£o. Möc ½ch cõa nâ l iºm l¤i mët sè kh¡i ni»m cì b£n cõa ¤i sè giao ho¡n v lþ thuy¸t ph¤m trò m theo chõ quan cõa m¼nh, t¡c gi£ cho l khæng thi¸u ÷ñc cho ng÷íi bt ¦u håc h¼nh håc ¤i sè. Nhi·u chùng minh ch¿ ÷ñc tr¼nh b y vn tt, ho«c thªm ch½ bä qua. N¸u c£m th§y c¦n thi¸t, ng÷íi åc câ thº tham kh£o cuèn s¡ch kinh iºn v· ¤i sè giao ho¡n cõa Matsumura hay l cuèn cõa Atyah v Macdonald. Ta chó þ °c bi»t ¸n ph¤m trò c¡c v nh giao ho¡n v c¡c h m tû tø ph¤m trò n y v o ph¤m trò c¡c tªp hñp. Kh¡i ni»m àa ph÷ìng ho¡ trong ¤i sè giao ho¡n v kh¡i ni»m h m tû biºu di¹n ÷ñc cõa lþ thuy¸t ph¤m trò ÷ñc nh§n m¤nh. Ch÷ìng 1 Sì l÷ñc v· ¤i sè giao ho¡n 1.1 V nh giao ho¡n Trong tªp hñp c¡c sè nguy¶n Z ta câ hai ph²p to¡n cì b£n l ph²p cëng v ph²p nh¥n. C¡c ph²p to¡n n y thäa m¢n mët sè t½nh ch§t nh÷ t½nh giao ho¡n, t½nh k¸t hñp v t½nh ph¥n phèi. Ph²p cëng câ mët ph¦n tû ìn và l 0, ph²p nh¥n câ mët ph¦n tû ìn và l 1. V nh giao ho¡n l c§u tróc ¤i sè trøu t÷ñng, mæ phäng c¡c t½nh ch§t cõa ph²p cëng v ph²p nhn sè nguy¶n. ành ngh¾a 1 V nh giao ho¡n l mët tªp hñp R còng vîi (+, 0, ×, 1) tho£ m¢n - tªp R, còng vîi ph²p cëng + v ph¦n tû 0∈R l ph¦n tû ìn và èi vîi +, t¤o th nh mët nhâm Abel. -tªp R còng vîi ph²p nh¥n × v ph¦n tû 1∈R ìn và vîi ph²p ., t¤o th nh mët nûa nhâm ...
Tìm kiếm theo từ khóa liên quan:
Hìnhhọc đại số GiáotrìnhHìnhhọc đại số Hình học xạ ảnh Đối đồng đều Đại số giao hoán Đại số đồng đềuTài liệu có liên quan:
-
Đề thi kết thúc học phần học kì 2 môn Hình học xạ ảnh năm 2021-2022 có đáp án - Trường ĐH Đồng Tháp
4 trang 35 1 0 -
236 trang 34 1 0
-
Toán học - Lịch sử hình học: Phần 2
78 trang 33 0 0 -
Đề thi kết thúc học phần học kì 2 môn Hình học xạ ảnh năm 2020-2021 có đáp án - Trường ĐH Đồng Tháp
2 trang 31 1 0 -
Bốn cách chứng minh định lí Pappus
7 trang 31 0 0 -
Tìm hiểu lịch sử của hình học: Phần 2
89 trang 30 0 0 -
Hình học đại số - Nhập môn đại số giao hoán: Phần 1
81 trang 30 0 0 -
203 trang 29 0 0
-
Toán học - Lịch sử hình học: Phần 1
82 trang 29 0 0 -
Bài tập nhóm: Môn hình học xạ ảnh
11 trang 28 0 0