Human gait analysis using hybrid convolutional neural networks
Số trang: 18
Loại file: pdf
Dung lượng: 1.13 MB
Lượt xem: 30
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
This paper analyses the combination of IMU sensors and electromyography sensors (EMG) to improve the identification accuracy of human movements. We propose the hybrid convolutional neural network (CNN) and long short-term memory neuron network (LSTM) for the human gait analysis problem to achieve an accuracy of 0.9418, better than other models including pure CNN models.
Nội dung trích xuất từ tài liệu:
Human gait analysis using hybrid convolutional neural networks
Nội dung trích xuất từ tài liệu:
Human gait analysis using hybrid convolutional neural networks
Tìm kiếm theo từ khóa liên quan:
Computer science and cybernetics Human gait analysis Wearable IoT devices Time-series analysis Deep learningTài liệu có liên quan:
-
8 trang 235 0 0
-
Application of convolutional neural network for detecting concrete cracks
4 trang 44 0 0 -
28 trang 40 0 0
-
Improving hand posture recognition performance using multi-modalities
10 trang 40 0 0 -
11 trang 38 0 0
-
Modern approaches in natural language processing
25 trang 38 0 0 -
8 trang 37 0 0
-
Revisiting some fuzzy algebraic structures
16 trang 37 0 0 -
Adaptive fast nonsingular terminal sliding mode control for manipulator robot
10 trang 36 0 0 -
Effects of climate variations on hand foot mouth disease in Ho Chi Minh city
8 trang 35 0 0