Probability theory began in seventeenth century France when the two great Frenchmathematicians, Blaise Pascal and Pierre de Fermat, corresponded over two problemsfrom games of chance. Problems like those Pascal and Fermat solved continuedto influence such early researchers as Huygens, Bernoulli, and DeMoivre in establishinga mathematical theory of probability. Today, probability theory is a wellestablishedbranch of mathematics that finds applications in every area of scholarlyactivity from music to physics, and in daily experience from weather prediction topredicting the risks of new medical treatments.......
Nội dung trích xuất từ tài liệu:
Introduction to ProbabilityIntroduction to Probability Charles M. Grinstead Swarthmore College J. Laurie Snell Dartmouth College To our wivesand in memory ofReese T. ProsserContents1 Discrete Probability Distributions 1 1.1 Simulation of Discrete Probabilities . . . . . . . . . . . . . . . . . . . 1 1.2 Discrete Probability Distributions . . . . . . . . . . . . . . . . . . . . 182 Continuous Probability Densities 41 2.1 Simulation of Continuous Probabilities . . . . . . . . . . . . . . . . . 41 2.2 Continuous Density Functions . . . . . . . . . . . . . . . . . . . . . . 553 Combinatorics 75 3.1 Permutations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 3.2 Combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 3.3 Card Shuffling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1204 Conditional Probability 133 4.1 Discrete Conditional Probability . . . . . . . . . . . . . . . . . . . . 133 4.2 Continuous Conditional Probability . . . . . . . . . . . . . . . . . . . 162 4.3 Paradoxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1755 Distributions and Densities 183 5.1 Important Distributions . . . . . . . . . . . . . . . . . . . . . . . . . 183 5.2 Important Densities . . . . . . . . . . . . . . . . . . . . . . . . . . . 2056 Expected Value and Variance 225 6.1 Expected Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 6.2 Variance of Discrete Random Variables . . . . . . . . . . . . . . . . . 257 6.3 Continuous Random Variables . . . . . . . . . . . . . . . . . . . . . . 2687 Sums of Random Variables 285 7.1 Sums of Discrete Random Variables . . . . . . . . . . . . . . . . . . 285 7.2 Sums of Continuous Random Variables . . . . . . . . . . . . . . . . . 2918 Law of Large Numbers 305 8.1 Discrete Random Variables . . . . . . . . . . . . . . . . . . . . . . . 305 8.2 Continuous Random Variables . . . . . . . . . . . . . . . . . . . . . . 316 vvi CONTENTS9 Central Limit Theorem 325 9.1 Bernoulli Trials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325 9.2 Discrete Independent Trials . . . . . . . . . . . . . . . . . . . . . . . 340 9.3 Continuous Independent Trials . . . . . . . . . . . . . . . . . . . . . 35510 Generating Functions 365 10.1 Discrete Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . 365 10.2 Branching Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . 377 10.3 Continuous Densities . . . . . . . . . . . . . . . . . . . . . . . . . . . 39411 Markov Chains 405 11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405 11.2 Absorbing Markov Chains . . . . . . . . . . . . . . . . . . . . . . . . 415 11.3 Ergodic Markov Chains . . . . . . . . . . . . . . . . . . . . . . . . . 433 11.4 Fundamental Limit Theorem . . . . . . . . . . . . . . . . . . . . . . 447 11.5 Mean First Passage Time . . . . . . . . . . . . . . . . . . . . . . . . 45212 Random Walks 471 12.1 Random Walks in Euclidean Space . . . . . . . . . . . . . . . . . . . 471 12.2 Gambler’s Ruin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 486 12.3 Arc Sine Laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493 Appendices 499 A Normal Distribution Table . . . . . . . . . . . . . . . . . . . . . . . . 499 B Galton’s Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500 C Life Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501 Index 503PrefaceProbability theory began in seventeenth century France when the two great Frenchmathematicians, Blaise Pascal and Pierre de Fermat, corresponded over two prob-lems from games of chance. Problems like those Pascal and Fermat solved continuedto influence such early researchers as Huygens, Bernoulli, and DeMoivre in estab-lishing a mathematical theory of probability. Today, probability theory is a well-established branch of mathematics that finds applications in every area of scholarlyactivity from music to physics, and in daily ex ...
Introduction to Probability
Số trang: 520
Loại file: pdf
Dung lượng: 3.04 MB
Lượt xem: 25
Lượt tải: 0
Xem trước 10 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Tài liệu có liên quan:
-
Luật hình sự - phần tội phạm 02
27 trang 78 0 0 -
2 trang 72 0 0
-
Quy tắc 10/20/30 cho bài thuyết trình bằng PowerPoint
2 trang 66 0 0 -
Thuyết trình báo cáo khoa học 'Presentation'
8 trang 56 0 0 -
Các quy luật phân phối xác suất
0 trang 33 0 0 -
Chiều hướng phát triển dân số và học sinh, hiện tại và tương lai
12 trang 32 0 0 -
0 trang 27 0 0
-
Đánh giá Tư duy trong lớp học Khối 6
2 trang 27 0 0 -
3 trang 27 0 0
-
Kiểm định giả thiết thống kê và ý nghĩa của trị số P(P-value)
trang 27 0 0