Danh mục tài liệu

Luyện thi Đại học Kit 1 - Môn Toán: Giải phương trình mũ (Hướng dẫn giải bài tập tự luyện)

Số trang: 4      Loại file: pdf      Dung lượng: 213.31 KB      Lượt xem: 12      Lượt tải: 0    
Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Tham khảo tài liệu Luyện thi Đại học Kit 1 - Môn Toán: Giải phương trình mũ (Hướng dẫn giải bài tập tự luyện) giúp bạn kiểm tra, củng cố lại kiến thức về phương trình mũ. Chúc bạn học học tốt.
Nội dung trích xuất từ tài liệu:
Luyện thi Đại học Kit 1 - Môn Toán: Giải phương trình mũ (Hướng dẫn giải bài tập tự luyện)Khóa học LTðH môn Toán – Thầy Lê Bá Trần Phương Phương trình, hệ phương trình, bất phương trình GIẢI PHƯƠNG TRÌNH MŨ HƯỚNG DẪN GIẢI BÀI TẬP TỰ LUYỆN Giáo viên: LÊ BÁ TRẦN PHƯƠNG Bài 1: Giải phương trình: 64 x − 641− x − 12 ( 4 x − 41− x ) = 27 Giải: Phương trình ⇔ ( 4 x ) − ( 41− x ) − 12 ( 4 x − 41− x ) = 27 3 3 ⇔ ( 4 x − 41− x ) + 3.4 x.41− x. ( 4 x − 41− x ) − 12 ( 4 x − 41− x ) = 27 3 ⇔ ( 4 x − 41− x ) = 27 = 33 3 ⇔ 4 x − 41− x = 3 ⇔ 4 2 x − 3.2 x − 4 = 0  4 x = −1 ⇔ x ⇔ x =1  4 = 4 x 2 Bài 2: Giải phương trình 3x .2 2 x−1 = 6 Giải: 1 ðiều kiện: x ≠ 2  2 x  Phương trình ⇔ log 3  3x .2 2 x−1  = log 3 6   x x2 ⇔ log 3 3 + log 3 2 2 x −1 = log 3 6 x ⇔ x2 + .log 3 2 = log 3 (2.3) 2x −1 ⇔ x 2 (2 x − 1) + x log 3 2 = (2 x − 1)(log 3 2 + 1) ⇔ 2 x 3 − x 2 − ( x − 1) log 3 2 − 2 x + 1 = 0 ⇔ 2 x 3 − 2 x − ( x 2 − 1).log 3 2 = 0 ⇔ ( x − 1).  2 x 2 + x − 1 − log 3 2  = 0 x = 1 ⇔  x = −1 ± 9 + 8log 3 2  4 ( ) + (7 − 4 3 ) x x Bài 3: Giải phương trình 7 + 4 3 = 14 Giải: ( ) ( ) ( ) ( ) 1 x x x x Do 7 + 4 3 . 7 − 4 3 = 1 nên ñặt 7 + 4 3 = t (t > 0) ⇒ 7 − 4 3 = t 1 t = 7 + 4 3 Thay vào phương trình ta ñược: t + = 14 ⇔ t 2 − 14t + 1 = 0 ⇔  t t = 7 − 4 3 Hocmai.vn – Ngôi trường chung của học trò Việt Tổng ñài tư vấn: 1900 58-58-12 - Trang | 1 -Khóa học LTðH môn Toán – Thầy Lê Bá Trần Phương Phương trình, hệ phương trình, bất phương trình ( ) x + Với t = 7 + 4 3 ⇒ 7 + 4 3 = 7 + 4 3 ⇔ x =1 3 ⇒ (7 + 4 3 ) ( ) x −1 + Với t = 7 − 4 =7−4 3 = 7+4 3 ⇔ x = −1 x = 1 ðáp số:   x = −1 Bài 4: Giải phương trình 4 x − 3.2 x+1 + 8 = 0 Giải: Phương trình ⇔ 4 x − 6.2 x + 8 = 0 ðặt 2 x = t > 0 , thay vào phương trình ta có: t 2 − 6t + 8 = 0 t = 4 2x = 4 x = 2 ⇔ ⇔ x ⇔ t = 2 2 = 2 x =1 1 + cos2 x sin 2 x cos 2 x Bài 5: Giải phương trình 9 + 4.9 = 13 + 9 2 − 3cos2 x Giải: 3 2 2 − 2sin 2 x 2 Phương trình ⇔ 9sin x + 4.91−sin x = 13 + 9 2 − 31− 2sin x 2 36 27 3 ⇔ 9sin x + sin 2 x = 13 + 2sin 2 x − sin 2 x 9 9 9 = t (1 ≤ t ≤ 9 ) ...