Danh mục tài liệu

Lý thuyết và bài tập hệ thức vi-ét

Số trang: 9      Loại file: pdf      Dung lượng: 500.64 KB      Lượt xem: 18      Lượt tải: 0    
Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Tài liệu gồm phần lý thuyết và bài tập hệ thức vi-ét sẽ giúp các bạn học sinh dễ dàng hệ thống lại kiến thức lý thuyết đã học trên lớp đồng thời rèn luyện kỹ năng giải các bài tập. Mời các bạn tham khảo!
Nội dung trích xuất từ tài liệu:
Lý thuyết và bài tập hệ thức vi-ét Date LINH HOẠT SỬ DỤNG HỆ THỨC VI-ÉT “tailieumontoan.com”I. Lý Thuyêt II. Bài tâp1. Hệ thức Vi-ét  Nếu x 1 ; x 2 là hai nghiệm của phương trình Bài 1. Cho phương trình 8x 2 − 8x + m 2 + 1 =0 (*)  −b Tìm m để phương trình (*) có hai nghiệm x1 , x2 mà x1 + x2 =  a ax 2 + bx + c= 0 (a ≠ 0 ) thì:  x 14 − x 24 = x 13 − x 23 x .x = c Nhận xét: Ta thấy hệ thức đề bài đưa ra có vẻ phức tạp  1 2 a và gây khó khăn khi đưa về x 1 + x 2 và x 1 .x 2 nhưng ta có  Nếu phương trình ax 2 + bx + c= 0 (a ≠ 0 ) có thể biến đổi x 1 , x 2 thông qua phương trình (*) để sử dụng a +b +c = 0 thì phương trình có một nghiệm là hệ thức vi-ét. c Lời giải. x 1 = 1 , còn nghiệm kia là x 2 = Ta có ∆ = 8 − 8m . Để PT(*) có nghiệm thì 2 a ∆ ≥ 0 ⇔ −1 ≤ m ≤ 1. Khi đó theo hệ thức Vi-ét ta có:  Nếu phương trình ax 2 + bx + c= 0 (a ≠ 0 ) có x 1 + x 2 = 1; x 1 x 2 = (m 2 ) + 1 : 8. a −b +c = 0 thì phương trình có một nghiệm là Vì x 1 , x 2 là hai nghiệm của PT(1) nên c x 1 = −1 , còn nghiệm kia là x 2 = − a 8x 12 − 8x 1 =  − m2 + 1 ( )  2 (I )2. Tìm hai số biết tổng và tích của chúng 8x 2 − 8x 2 = − m2 + 1 ( )  Nếu hai số đó có tổng bằng S và tích bằng P Ta có: x 14 − x 24 = x 13 − x 23 thì hai số đó là hai nghiệm của phương trình ( ) ⇔ x 12 8x 12 − 8x 1 − x 22 8x 22 − 8x 2 = 0 ( ( 1) ) x − Sx + P = 2 0 Thay (I) vào (1) ta được Điều kiện để có hai số đó là: (x 2 1 − x 12 )( −m 2 ) −1 = 0 S − 4P ≥ 0 ( ∆ ≥ 0 ) 2 ⇔ ( x 1 − x 2 )( x 1 + x 2 ) ( −m 2 −1 = 0 ) ⇔ x1 − x2 = 0 (do x 1 + x 2 = 1; − m 2 − 1 ≠ 0 ) Do đó x= x= 1 mà x 1 x 2 = m2 + 1 ...

Tài liệu có liên quan: