Prediction of radiosensitivity and radiocurability using a novel supervised artificial neural network
Số trang: 15
Loại file: pdf
Dung lượng: 7.37 MB
Lượt xem: 20
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Radiotherapy has been widely used to treat various cancers, but its efcacy depends on the individual involved. Traditional gene-based machine-learning models have been widely used to predict radiosensitivity.
Nội dung trích xuất từ tài liệu:
Prediction of radiosensitivity and radiocurability using a novel supervised artificial neural network
Nội dung trích xuất từ tài liệu:
Prediction of radiosensitivity and radiocurability using a novel supervised artificial neural network
Tìm kiếm theo từ khóa liên quan:
BMC Cancer Computational biology High-Throughput sequencing Multi-omics Neural network models Root mean squared errorsTài liệu có liên quan:
-
Differences between physician and patient preferences for cancer treatments: A systematic review
13 trang 179 0 0 -
6 trang 171 0 0
-
Immune checkpoint inhibitors and their impact on liver enzymes and attenuation
7 trang 150 0 0 -
2011–2021 rising prevalence of HPV infection among oropharyngeal carcinoma in France
9 trang 136 0 0 -
12 trang 103 0 0
-
19 trang 81 0 0
-
17 trang 71 0 0
-
9 trang 48 0 0
-
9 trang 43 0 0
-
Investigating the prognostic and predictive value of the type II cystatin genes in gastric cancer
17 trang 43 0 0