Danh mục tài liệu

Sáng kiến kinh nghiệm: Sử dụng tính chất hình học trong bài toán toạ độ

Số trang: 29      Loại file: pdf      Dung lượng: 259.74 KB      Lượt xem: 7      Lượt tải: 0    
Xem trước 3 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Sáng kiến kinh nghiệm: Sử dụng tính chất hình học trong bài toán toạ độ được nghiên cứu nhằm mục đích cung cấp tài liệu học tập, bài tập luyện tập cho học sinh, và cũng là một tài liệu tham khảo cho giáo viên. Khi đọc tài liệu này, học sinh sẽ được nhắc lại các kiến thức hình học phẳng ở cấp 2 về tam giác, đường tròn mà có thể các em đã quên, sử dụng một cách hợp lí các tính chất đó để giải bài toán. Đây còn là một tài liệu tham khảo cho giáo viên, cung cấp cho giáo viên một phương án tham khảo để hệ thống hoá, phân chia các dạng bài toán hình học toạ độ trong mặt phẳng.
Nội dung trích xuất từ tài liệu:
Sáng kiến kinh nghiệm: Sử dụng tính chất hình học trong bài toán toạ độSử dụng tính chất hình học trong bài toán toạ độ Phan Tấn PhúMục lục1 Mở đầu 3 1.1 Lý do chọn đề tài . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Mục đích của đề tài . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Phạm vi của đề tài . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.4 Điểm mới của đề tài . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Một số kiến thức lý thyết 5 2.1 Các kiến thức về tam giác và đường tròn . . . . . . . . . . . . . . . . . . . 5 2.1.1 Định lý Thales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.2 Trọng tâm, trực tâm, tâm đường tròn ngoại tiếp, nội tiếp . . . . . . . 5 2.1.3 Hệ thức lượng trong tam giác vuông . . . . . . . . . . . . . . . . . . 7 2.1.4 Định lí cosin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1.5 Công thức độ dài đường trung tuyến . . . . . . . . . . . . . . . . . . 8 2.1.6 Định lí sin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1.7 Góc ở tâm, góc nội tiếp, góc tạo bởi tiếp tuyến và dây cung . . . . . . 8 2.2 Các kiến thức về phương pháp toạ độ trong mặt phẳng . . . . . . . . . . . . 9 2.2.1 Toạ độ của điểm và toạ độ và toạ độ vectơ . . . . . . . . . . . . . . . 9 2.2.2 Tích vô hướng của hai vectơ và ứng dụng . . . . . . . . . . . . . . . 9 2.2.3 Phương trình đường thẳng . . . . . . . . . . . . . . . . . . . . . . . 10 2.2.4 Khoảng cách từ điểm đến đường thẳng . . . . . . . . . . . . . . . . 11 2.2.5 Góc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2.6 Phương trình đường tròn . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2.7 Vị trí tương đối giữa đường thẳng và đường tròn . . . . . . . . . . . 123 Các bài toán 13 3.1 Sử dụng định lý Thales và tính tỉ số đoạn thẳng . . . . . . . . . . . . . . . . 13 3.1.1 Tìm toạ độ điểm chia đoạn thẳng cho trước bởi một tỉ số cho trước . . 13 3.1.2 Tìm toạ độ một điểm thoả mãn đẳng thức vectơ cho trước . . . . . . 13 3.2 Sử dụng tính chất đường phân giác . . . . . . . . . . . . . . . . . . . . . . 15 3.3 Viết phương trình đường thẳng qua một điểm và tạo với một đường thẳng góc cho sẵn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1Sử dụng tính chất hình học trong bài toán toạ độ Phan Tấn Phú 3.4 Các kĩ thuật sử dụng toạ độ các điểm cho sẵn . . . . . . . . . . . . . . . . . 19 3.4.1 Sử dụng đường thẳng đi qua hai điểm cho sẵn . . . . . . . . . . . . . 19 3.4.2 Tìm một điểm cách hai điểm cho sẵn những khoảng cách đã biết . . . 20 3.5 Góc tạo bởi tiếp tuyến của đường tròn và dây cung . . . . . . . . . . . . . . 22 3.6 Sử dụng hệ thức lượng trong tam giác vuông, diện tích tam giác vuông . . . 24 3.7 Sử dụng các điểm cùng thuộc một đường tròn . . . . . . . . . . . . . . . . . 26 3.8 Kĩ thuật tổng hợp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.9 Bài tập . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2Sử dụng tính chất hình học trong bài toán toạ độ Phan Tấn PhúChương 1Mở đầu1.1 Lý do chọn đề tàiĐề thi đại học các năm gần đây thường có bài toán hình học toạ độ trong mặt phẳng. Kì thiquốc gia năm 2015 sắp đến cũng sẽ có bài toán này. Ở chương 3 hình học lớp 10, học sinhđã được học phương pháp toạ độ trong mặt phẳng. Tuy nhiên, các bài toán mà học sinh gặpở lớp 10 chỉ dừng lại ở việc sử dụng toạ độ như toạ độ của điểm, vectơ, phương trình đườngthẳng, phương trình đường tròn, góc, khoảng cách. Bài toán trong đề thi thì khác hẳn, đó làbài toán tổng hợp đòi hỏi phải huy động nhiều kiến thức hình học phẳng mà đa số nằm ởcấp 2 (trung học cơ sở). Nhiều bài toán đòi hỏi phải vận dụng linh hoạt các tính chất hìnhhọc để đi đến lời giải nhanh hơn, còn nếu chỉ sử dụng thuần tuý toạ độ thường được lời giảisẽ dài dòng, có khi không thể giải được. Đây là một khó khăn thực sự của học sinh trongviệc ôn thi kì thi quốc gia năm 2015 sắp tới. Để giúp học sinh có tài liệu học tập, luyện tậpcho kiểu bài toán này, giáo viên có tài liệu tham khảo, chúng tôi viết chuyên đề “sử dụngtính chất hình học trong bài toán toạ độ”.1.2 Mục đích của đề tàiChuyên đề này nhằm mục đích cung cấp tài liệu học tập, bài tập luyện tập cho học sinh, vàcũng là một tài liệu tham khảo cho giáo viên. Khi đọc tài liệu này, học sinh sẽ được nhắc lạicác kiến thức hình học phẳng ở cấp 2 về tam giác, đường tròn mà có thể các em đã quên, sửdụng một cách hợp lí các tính chất đó để giải bài toán. Đây còn là một tài liệu tham khảocho giáo viên, cung cấp cho giáo viên một phương án tham khảo để hệ thống hoá, phânchia các dạng bài toán hình học toạ độ trong mặt phẳng.1.3 Phạm vi của đề tàiMảng kiến thức liên quan trực tiếp của đề tài là chương 3 hình học lớp 10: phương pháptoạ độ trong mặt phẳng. Tuy nhiên, đề tài liên quan đến các kiến thức hình học phẳng ởcấp 2 như: tam giác, đường tròn, hình thang, hình bình hành, hình chữ nhật, hình thoi, hìnhvuông, định lý Thales, tiếp tuyến của đường tròn, góc nội tiếp,... 3Sử dụng tính chất hình học trong bài toán toạ độ Phan Tấn Phú1.4 Điểm mới của đề tàiChúng ta thường thấ ...

Tài liệu được xem nhiều:

Tài liệu có liên quan: