Danh mục tài liệu

Tóm tắt Luận văn Thạc sĩ: Ứng dụng khai phá dữ liệu trong hỗ trợ chẩn đoán bệnh đái tháo đường tuýp 2

Số trang: 19      Loại file: pdf      Dung lượng: 545.25 KB      Lượt xem: 10      Lượt tải: 0    
Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Mục đích của Luận văn này là nghiên cứu tìm hiểu các thuật toán trong chẩn đoán bệnh đái tháo đường, từ đó áp dụng và thử nghiệm hỗ trợ chẩn đoán bệnh đái tháo đường tuýp 2. Để hiểu rõ hơn mời các bạn cùng tham khảo nội dung chi tiết của Luận văn này.
Nội dung trích xuất từ tài liệu:
Tóm tắt Luận văn Thạc sĩ: Ứng dụng khai phá dữ liệu trong hỗ trợ chẩn đoán bệnh đái tháo đường tuýp 2 HỌC VIỆN CÔNG NGHỆ BƯU CHÍNH VIỄN THÔNG ------------------------------- HOÀNG VĂN THẮNG ỨNG DỤNG KHAI PHÁ DỮ LIỆU TRONG HỖ TRỢ CHẨN ĐOÁN BỆNH ĐÁI THÁO ĐƯỜNG TUÝP 2 Chuyên ngành: Hệ thống thông tin Mã số: 8.48.01.04 TÓM TẮT LUẬN VĂN THẠC SĨ HÀ NỘI – 2020 Luận văn được hoàn thành tại: HỌC VIỆN CÔNG NGHỆ BƯU CHÍNH VIỄN THÔNG Người hướng dẫn khoa học: TS. Đỗ Thị Bích Ngọc Phản biện 1: ………………………………………………… Phản biện 2: ………….…………………………………….. Luận văn sẽ được bảo vệ trước Hội đồng chấm luận văn thạc sĩ tại Học viện Công nghệ Bưu chính Viễn thông Vào lúc: ....... giờ ....... ngày ....... tháng ....... .. năm ............... Có thể tìm hiểu luận văn tại: - Thư viện của Học viện Công nghệ Bưu chính Viễn thông 1 MỞ ĐẦU Đái tháo đường là một trong những vấn đề y tế toàn cầu cấp bách của của thế kỷ 21, là gánh nặng tài chính cho chăm sóc y tế cản trở quá trình đạt mục tiêu phát triển bền vững, đặc biệt ở các nước thu nhập thấp và trung bình. Trên toàn thế giới, năm 2015, có 415 triệu người mắc bệnh đái tháo đường, chi phí y tế toàn cầu cho điều trị đái tháo đường và các biến chứng là 673 tỷ USD. Số bệnh nhân mắc bệnh ĐTĐ dự báo tăng 55% vào năm 2040, với chi phí y tế toàn cầu cho ĐTĐ lên tới 802 tỷ USD. Tại Việt Nam, năm 2015 có 3.5 triệu người mắc bệnh, chiếm 6% người lớn trong độ tuổi từ 20 tới 79. Năm 2040, số người mắc bệnh lên tới 6.1 triệu người. Chi phí y tế trên đầu người là 162.7 USD. Theo điều tra năm 2015 của Bộ Y tế, tỉ lệ mắc đái tháo đường trong độ tuổi 50-69 là 7.7% và có xu hướng ngày càng trẻ hoá. Chỉ có 31.1% bệnh nhân đái tháo đường được chẩn đoán. Do đó, việc phát hiện sớm sẽ giúp người bệnh tiết kiệm chi phí điều trị và hạn chế thấp nhất biến chứng. Bệnh đái tháo đường tuýp 2 chiếm gần 90% các trường hợp đái tháo đường và thường được gọi là bệnh đái tháo đường khởi phát ở người lớn hoặc bệnh đái tháo đường không phụ thuộc insulin. Vì vậy việc khai phá dữ liệu về bệnh án từ đó hỗ trợ các bác sĩ có thể đưa ra các chẩn đoán chính xác hơn, khách quan hơn. Xuất phát từ những nhu cầu thực tế trên và đó là những lý do học viên chọn đề tài “Ứng dụng khai phá dữ liệu trong hỗ trợ chẩn đoán bệnh đái tháo đường tuýp 2”. Nội dung luận văn Chương 1: Tổng quan về hệ chuyên gia, trình bày cấu trúc chính và nguyên tắc hoạt động của hệ chuyên gia Chương 2: Nghiên cứu tìm hiểu các thuật toán trong chẩn đoán bệnh đái tháo đường, từ đó áp dụng và thử nghiệm hỗ trợ chẩn đoán bệnh đái tháo đường tuýp 2 Chương 3: Thử nghiệm và lựa chọn thuật toán, Báo cáo đánh giá kết quả. Mặc dù có nhiều cố gắng nhưng thời gian và năng lực còn hạn chế nên luận văn không tránh khỏi những khiếm khuyết. Kính mong thầy cô và đồng nghiệp thông cảm, cho ý kiến đóng góp. Trân trọng cảm ơn ! 2 CHƯƠNG 1 - BÀI TOÁN HỖ TRỢ CHẨN ĐOÁN BỆNH ĐÁI THÁO ĐƯỜNG 1.1. Giới thiệu chung Bệnh đái tháo đường là một bệnh mạn tính xảy ra khi tuyến tụy không sản xuất đủ insulin hoặc khi cơ thể không thể sử dụng hiệu quả insulin nó tạo ra 1.2. Khai phá dữ liệu trong hỗ trợ chẩn đoán bệnh đái tháo đường 1.2.1. Học máy và khám phá tri thức Bước thứ nhất: Tìm hiểu lĩnh vực ứng dụng và hình thành bài toán, bước này sẽ quyết định cho việc rút ra được các tri thức hữu ích và cho phép chọn các phương pháp khai phá dữ liệu thích hợp với mục đích ứng dụng và bản chất của dữ liệu. Bước thứ hai: Thu thập và xử lý dữ liệu thô, còn được gọi là tiền xử lý dữ liệu nhằm loại bỏ nhiễu, xử lý việc thiếu dữ liệu, biến đổi dữ liệu và rút gọn dữ liệu nếu cần thiết, bước này chiếm khá nhiều thời gian trong toàn bộ quy trình khám phá tri thức. Bước thứ ba: Khai phá dữ liệu, hay nói cách khác là trích ra các mẫu hoặc/và các mô hình ẩn dưới các dữ liệu. Bước thứ tư: Hiểu tri thức đã tìm được, đặc biệt là làm sáng tỏ các mô tả và dự đoán. Các bước trên có thể lặp đi lặp lại một số lần, kết quả thu được có thể được lấy trung bình trên tất cả các lần thực hiện. Bước thứ năm: Sử dụng tri thức đã được khai phá vào thực tế. Các tri thức phát hiện được tích hợp chặt chẽ trong hệ thống. Tuy nhiên để sử dụng được các tri thức đó đôi khi cần đến các chuyên gia trong các lĩnh vực quan tâm vì tri thức rút ra có thể chỉ mang tính chất hỗ trợ quyết định hoặc cũng có thể được sử dụng cho một quá trình khám phá tri thức khác. 1.2.2. Học có giám sát. Học có giám sát (supervised learning) là một kỹ thuật của ngành học máy nhằm mục đích xây dựng một hàm ???? từ dữ tập dữ liệu huấn luyện (Training data). Dữ liệu huấn luyện bao gồm các cặp đối tượng đầu vào và đầu ra mong muốn. Đầu ra của hàm ???? có thể là một giá trị liên tục hoặc có thể là dự đoán một nhãn phân lớp cho một đối tượng đầu vào. Trong đó, thuật toán tạo ra một hàm ánh xạ dữ liệu vào tới kết quả mong muốn. Một phát biểu chuẩn về một việc học có giám 3 sát là bài toán phân loại: chương trình cần học (cách xấp xỉ biểu hiện của) một hàm ánh xạ một vector ????1 , ????2 , … ???????? tới một vài lớp bằng cách xem xét một số mẫu dữ liệu - kết quả của hàm đó. 1.2.3. Học không có giám sát. Học không có giám sát (unsupervised learning) là một phương pháp nhằm tìm ra một mô hình mà phù hợp với các quan sát. Trong học không có giám sát, một tập dữ liệu đầu vào được thu thập. Học không có giám sát thường đối xử với các đối tượng đầu vào như là một tập các biến ngẫu nhiên. Sau đó, một mô hình mật độ kết hợp sẽ được xây dựng cho tập dữ liệu đó. Tất cả dữ liệu không được gắn nhãn và các thuật toán tìm hiểu cấu trúc vốn có từ dữ liệu đầu v ...

Tài liệu có liên quan: