Danh mục tài liệu

Tổng hợp công thức vật lí 12

Số trang: 36      Loại file: pdf      Dung lượng: 1.44 MB      Lượt xem: 8      Lượt tải: 0    
Xem trước 4 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Tổng hợp một số công thức vật lý giúp cho học sinh hệ thống kiến thức, công thức và làm bài dễ dàng hơn. Mời các bạn tham khảo!
Nội dung trích xuất từ tài liệu:
Tổng hợp công thức vật lí 12 CHƯƠNG : DAO ĐỘNG CƠI. DAO ĐỘNG ĐIỀU HOÀ1. Phương trình dao động: x = Acos(t + )2. Vận tốc tức thời: v = -Asin(t + ) v luôn cùng chiều với chiều chuyển động (vật cđộng theo chiều dương thì v>0, theo chiều âm thì v Vật có vận tốc lớn nhất khi qua VTCB, nhỏ nhất khi qua vị trí biên nên trong cùng một khoảng thời gianquãng đường đi được càng lớn khi vật ở càng gần VTCB và càng nhỏ khi càng gần vị trí biên. Sử dụng mối liên hệ giữa dao động điều hoà và chuyển đường tròn đều. Góc quét  = t. Quãng đường lớn nhất khi vật đi từ M1 đến M2 đối xứng qua trục sin (hình 1)  S Max  2A sin 2 Quãng đường nhỏ nhất khi vật đi từ M1 đến M2 đối xứng qua trục cos (hình 2)  S Min  2 A(1  cos ) 2 M2 P M1 M2 Lưu ý: + Trong trường hợp t > T/2  2 T A P A Tách t  n  t - -  A P2 O P x A O x 1 2 2 T M1 trong đó n  N * ;0  t  2 T Trong thời gian n quãng đường luôn là 2nA 2 Trong thời gian t’ thì quãng đường lớn nhất, nhỏ nhất tính như trên. + Tốc độ trung bình lớn nhất và nhỏ nhất của trong khoảng thời gian t: S S vtbMax  Max và vtbMin  Min với SMax; SMin tính như trên. t t13. Các bước lập phương trình dao động dao động điều hoà: * Tính  * Tính A  x  Acos(t0   ) * Tính  dựa vào điều kiện đầu: lúc t = t0 (thường t0 = 0)   v   Asin(t0   ) Lưu ý: + Vật chuyển động theo chiều dương thì v > 0, ngược lại v < 0 + Trước khi tính  cần xác định rõ  thuộc góc phần tư thứ mấy của đường tròn lượng giác (thường lấy -π <  ≤ π)14. Các bước giải bài toán tính thời điểm vật đi qua vị trí đã biết x (hoặc v, a, Wt, Wđ, F) lần thứ n * Giải phương trình lượng giác lấy các nghiệm của t (Với t > 0  phạm vi giá trị của k ) * Liệt kê n nghiệm đầu tiên (thường n nhỏ) * Thời điểm thứ n chính là giá trị lớn thứ nLưu ý:+ Đề ra thường cho giá trị n nhỏ, còn nếu n lớn thì tìm quy luật để suy ra nghiệm thứ n + Có thể giải bài toán bằng cách sử dụng mối liên hệ giữa dao động điều hoà và c động tròn đều15. Các bước giải bài toán tìm số lần vật đi qua vị trí đã biết x (hoặc v, a, W t, Wđ, F) từ thời điểm t1 đến t2. * Giải phương trình lượng giác được các nghiệm * Từ t1 < t ≤ t2  Phạm vi giá trị của (Với k  Z) * Tổng số giá trị của k chính là số lần vật đi qua vị trí đó.Lưu ý: + Có thể giải bài toán bằng cách sử dụng mối liên hệ giữa dao động điều hoà và c/động tròn đều. + Trong mỗi chu kỳ (mỗi dao động) vật qua mỗi vị trí biên 1 lần còn các vị trí khác 2 lần.16. Các bước giải bài toán tìm li độ, vận tốc dao động sau (trước) thời điểm t một khoảng thời gian t. Biết tại thời điểm t vật có li độ x = x0. * Từ phương trình dao động điều hoà: x = Acos(t + ) cho x = x0 Lấy nghiệm t +  =  với 0     ứng với x đang giảm (vật chuyển động theo chiều âm vì v < 0) hoặc t +  = -  ứng với x đang tăng (vật chuyển động theo chiều dương) * Li độ và vận tốc dao động sau (trước) thời điểm đó t giây là  x  Acos(t   )  x  Acos(t   )  hoặc  v   A sin(t   ) v   A sin(t   )17. Dao động có phương trình đặc biệt: 2 ...

Tài liệu được xem nhiều:

Tìm kiếm theo từ khóa liên quan:

Vật lý công thức vật lý ôn thi đại học

Tài liệu có liên quan: