Using knowledge-driven genomic interactions for multi-omics data analysis: Metadimensional models for predicting clinical outcomes in ovarian carcinoma
Số trang: 11
Loại file: pdf
Dung lượng: 1.29 MB
Lượt xem: 19
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
It is common that cancer patients have different molecular signatures even though they have similar clinical features, such as histology, due to the heterogeneity of tumors. To overcome this variability, we previously developed a new approach incorporating prior biological knowledge that identifies knowledge-driven genomic interactions associated with outcomes of interest.
Nội dung trích xuất từ tài liệu:
Using knowledge-driven genomic interactions for multi-omics data analysis: Metadimensional models for predicting clinical outcomes in ovarian carcinoma
Nội dung trích xuất từ tài liệu:
Using knowledge-driven genomic interactions for multi-omics data analysis: Metadimensional models for predicting clinical outcomes in ovarian carcinoma
Tìm kiếm theo từ khóa liên quan:
Medical informatics association Data integration Multi-omics data Ovarian cancer Cancer patients Heterogeneity of tumorsTài liệu có liên quan:
-
5 trang 46 0 0
-
THE FOX NEWS EFFECT: MEDIA BIAS AND VOTING*
48 trang 38 0 0 -
Using a stakeholder-engaged approach to develop and validate electronic clinical quality measures
10 trang 34 0 0 -
Falls and Fall Prevention in the Elderly: Insights from Jamaica
46 trang 33 0 0 -
Villa Castellett: A Taste of Firenze & Northern Tuscany
12 trang 27 0 0 -
Human resource information systems in health care: A systematic evidence review
22 trang 26 0 0 -
7 trang 25 0 0
-
The prognostic value of the preoperative c-reactive protein/albumin ratio in ovarian cancer
8 trang 25 0 0 -
12 trang 25 0 0
-
Sovereign Debt Crises and Credit to the Private Sector
51 trang 24 0 0