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Virtual Production of Filaments and Fleeces

Raimund Wegener, Nicole Marheineke, and Dietmar Hietel

1 Consistency out of Chaos—A Challenge for Production

Production processes for manufacturing continuous filaments and fleeces are on-line pro-
cesses in which the individual process steps are highly coordinated with each other and
integrated into a tightly linked chain. The process chain for fleeces formed from filaments
consists of the operations melting, spinning, swirling, and deposition. Here, molten poly-
mer exits an extruder via a tube and is distributed on a spinning plate, where it is pressed
through capillary jets and spun to filaments by means of aerodynamic forces. The fila-
ments are swirled in an open air jet, decelerated, and deposited on a moving conveyor
belt. The overlapping of thousands of filaments produces a fleece, with its typically irreg-
ular and cloud-like structure. The application spectrum for fleeces is extremely broad and
ranges from everyday products like diapers and vacuum cleaner bags to high-tech goods
like battery separators and medical products. Naturally, filament spinning is also used in
conjunction with further processing steps, in the production of technical yarn products
or synthetic short-fibers, for example. Moreover, we include the production of fiber-like
insulation materials, such as glass wool and mineral wool, in the category of filament pro-
duction, since these processes are based on similar physical, albeit technically different,
principles.
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The fluctuating characteristics of filaments and fleeces—a consequence of the stochas-
tic, and often turbulence-induced, impacts on production processes—can lead to problems
in product quality. In the spinning processes, for example, such problems might come in
the form of fluctuations in filament diameter and strength, due to an unsteady temperature
history during cooling. These problems can frequently be traced back to the economic ne-
cessity of high machine throughput rates and tight filament bundling. Above and beyond
the problems of the individual filaments, fleeces also exhibit problems with fluctuations
in the weight and strength of the material. These latter arise on a sufficiently small scale
from the production principle itself, since a chaotic, turbulence-driven overlapping of the
filaments takes the place of an expensive weaving procedure. The bold challenge faced
by production is therefore to create consistency out of chaos, a challenge that has already
resulted in the development of astonishing installations and processes through decades
of technical advances in machine engineering. The currently available and continuously
improving instruments for simulating such complex processes, however, represent a quali-
tatively new opportunity for the simulation-supported design and control of these installa-
tions and processes. With their help, it is now possible to take the next step toward creating
even more consistency out of chaos.

2 Simulatable, but only in Principle—A Challenge
for Mathematics

Fundamentally, almost all the steps in the process chain outlined above—melting and spin-
ning, for filaments, plus swirling and deposition, for fleeces—can be viewed as continuum-
mechanical, multi-phase problems. Depending on the degree of cooling and the stage in the
process, one is treating a viscous, viscoelastic, or elastic filament phase, coupled with tur-
bulent airflow, in a complex machine geometry. Classical continuum mechanics offers the
models for such multi-phase problems. There is an abundance of numerical discretization
ideas, solution algorithms, and even ready-made software tools in the arsenal of applied
mathematicians and engineers. In other words, the problems can indeed be simulated, in
principle. Unfortunately, however, only in principle.

A closer look reveals, in fact, the hopelessness of such a monolithic approach: as our
examples of fleece production (Sect. 6) and glass wool production (Sect. 7) show, the
actual production processes demand the coupled filament flow simulation of thousands
of filaments having diameters as small as 10 microns in highly turbulent flows across
macroscopic scales on the order of meters. The mathematical challenge is therefore to use
modeling strategies such as homogenization and asymptotics, along with the generation of
surrogate models having a grey box character, to prepare adequate models for all the partial
aspects and then to couple these aspects together. After a thoroughgoing analysis of these
models, numerical algorithms must then be developed and adapted to the problem. Only in
this way can one portray the processes so as to allow realistic application scenarios to be
computed in an acceptable time and, thus, made accessible to optimization. The procedure
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requires, in particular, the compatibility between the various modeling approaches, the
derivation of coupling conditions, and the identification of model parameters. Using this
procedure, we want to avoid the trap of simulatable in principle, and achieve instead the
state of simulatable in practice, which will allow us to contribute significantly to the de-
sign and optimization of production processes. By concentrating diverse approaches from
various mathematical areas in a single application domain, the Fraunhofer ITWM has an
outstanding opportunity to substantiate its claim to be a problem-solver, to make innovative
contributions to existing research into applied mathematics, and to initiate the exploration
of brand new thematic areas. Our contribution to this book is designed to document the
current state of our work, but we hope that it also generates a host of new questions.

3 Studies in Filament Dynamics and Fleece Production
at the Fraunhofer ITWM

The work in filament dynamics at the Fraunhofer ITWM has its origins in a project that has
absolutely nothing to do with filaments and their production processes. In 1995, the year
the Institute was founded, we began work on simulating the paper flight in a printing press.
This was one of the first industrial projects in the Transport Processes Department, and the
starting point for at least two thematic areas that are today pursued in force within the De-
partment. The largely two-dimensionally characterized flow of paper in a printing press is
a coupled fluid-structure interaction problem. Therefore, particle methods were tested for
the flow domains below and above the sheet, which are time variant due to sheet move-
ment. For the sheet dynamics, shell models from continuum mechanics were refurbished,
which, in their two-dimensional variant, are mathematically equivalent to rod models for
filament dynamics. The work on particle methods led to development of the ITWM soft-
ware FPM (Finite Pointset Method), which is today one of the best-performing grid-free
simulation tools available on the market for a wide and still continuously growing field of
continuum mechanical problems. The work on sheet dynamics was the breeding ground
for all subsequent research in the area of filament dynamics, which is the subject matter of
this chapter. This short story illustrates the enormous power generated by problem-oriented
research in industrial projects: the specific questions breed approaches, which then often
grow far beyond the original field of investigation and the short-term concerns of daily
business.

In 1998, concurrently with the above-mentioned industrial printing press project, our
contact with the company Freudenberg, which dates back to before the founding of the
ITWM, was revitalized in Kaiserslautern in connection with the topic of fleece produc-
tion. It took a while, however, before the tender sprout would grow into a large-scale
Institute activity, whose salient points we want to selectively outline here. Our work in
this area received an initial impulse in 2003, in the form of a large, in-house Fraunhofer
project on market-oriented preparatory research. An accompanying dissertation [27] laid
the foundation for our turbulent force model in 2005 (Sect. 4.3 and Ref. [9, 16, 17]). The
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following year witnessed the first ideas for stochastic model analogies for deposition sim-
ulations (Sect. 4.4 and Ref. [5, 6]). At the same time, again on the basis of a dissertation
[29], work commenced on the asymptotic derivation of viscous string models [7, 20]. All
three of these thematic areas have been widely pursued and thematically extended up to
the present date (see development and status for turbulent force modeling [19], for the
stochastic surrogate lay down models [8, 11–13], and for asymptotic rod and string mod-
els [1, 4, 14, 18]). Likewise, as a consequence of the above-mentioned Fraunhofer project,
there has been an enormous broadening of our industrial customer base. Johns Manville
(2003) and Oerlikon Neumag (2004) are examples of a fleece manufacturer and a ma-
chine designer in the field of technical textiles. Both remain today steady customers of the
Fraunhofer ITWM.

It was then two projects sponsored by the BMBF at the start of this decade that set
long-term developments in motion: the project ‘Nano-melt-blown fibers for filter media’
(NaBlo, 2008–2011) set the stage for our current work on turbulence reconstruction for
filament dynamics [10]. In the project ‘Stochastic production processes for the manufactur-
ing of filaments and fleeces’ (ProFil, 2010–2013), a consortium project in the BMBF math-
ematics program under the leadership of the Fraunhofer ITWM, the complete production
chain for filaments and fleeces was simulated for the first time. Several PhD projects re-
sulted either directly from the project [22, 23, 25, 28] or were offshoots from it [26, 30, 31].
These represent an important foundation for further investigations in this thematic area.
The project also forms the basis for the current status of the central ITWM software for
filament dynamics, the FIDYST suite, with the software tools FIDYST (Fiber Dynamics
Simulation Tool, Sect. 5.1) and SURRO (Surrogate Model, Sect. 5.2). On the industrial
side, our contact with the company Woltz (2010) and the resulting, on-going cooperation
have proven extremely fruitful. Here, we were able to couple the filament and flow dynam-
ics in a complex production process for the first time, in connection with the manufacture
of glass wool (Sect. 7 and Ref. [3, 15]). The simulation toolbox VISFID (Viscous Fiber
Dynamics, Sect. 5.3) for coupled flow-filament simulations in spinning processes was con-
ceived in projects involving this production process.

Although this chapter discusses many of the above-mentioned topics, it makes no at-
tempt to offer a complete historical portrayal. Instead, it attempts to present a cohesive
overview from our current perspective. We therefore dedicate some space to the presen-
tation of a consistent and integrated modeling basis (Sect. 4), before we then show the
performance status of the software tools available today at the Fraunhofer ITWM (Sect. 5)
and demonstrate their capabilities using two typical industrial applications as examples:
the production of fleeces in the spunbond process (Sect. 6) and the production of glass
wool via rotational spinning (Sect. 7). To promote readability, we offer annotations at var-
ious points that summarize more detailed aspects of the work and illustrate how it fits
into the framework of current international research. Readers interested primarily in the
applications can also begin with Sects. 6 and 7, follow the references to the simulation
tools being used (Sect. 5), and consult with the underlying models (found in grey boxes in
Sect. 4) as desired.
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In addition to the authors, substantial credit for the modeling ideas, software devel-
opments, and industrial projects that serve as the foundations for this chapter must be
given to some of our current colleagues from the Transport Processes Department of the
Fraunhofer ITWM (Sergey Antonov, Dr. Walter Arne, Dr. Christian Leithäuser, Dr. Robert
Feßler, Dr. Simone Gramsch, Dr. Jan Mohring, Johannes Schnebele), as well as to some
former colleagues (Dr. Daniel Burkhart, Dr. Marco Günther, Dr. Jalo Liljo, Dr. Ferdi-
nand Olawsky). The past and current PhD projects mentioned here have been or are being
supervised by Prof. Nicole Marheineke (FAU Erlangen-Nürnberg), Prof. Andreas Meis-
ter (Universität Kassel), and Prof. Hans Hagen, Prof. Axel Klar, Prof. Helmut Neunzert,
Prof. Rene Pinnau, and Prof. Klaus Ritter (all from the TU Kaiserslautern).

4 Foundations of the Modeling

The Cosserat rod theory serves as the framework for the partial differential equation mod-
els considered here for filament dynamics. At their core are 1D balances for linear and
angular momentum. These are complemented by geometric models for describing angular
momentum, material laws for the emerging internal stress forces and moments, as well
as models for the external forces acting on the system. In view of the target application,
the interaction of the filaments with the surrounding, often turbulent, airflow is especially
significant.

These Cosserat rod models can be used to successfully simulate single filaments in
spinning and swirling processes. However, the significant computational effort prevents a
virtual mapping of complete fleece deposition processes involving large numbers of fil-
aments. Therefore, surrogate models based on stochastic differential equations (SODE)
were developed and implemented at the Fraunhofer ITWM, which allow highly efficient
simulations of the fleece deposition structure. The parameters of these surrogate models
are identified using the Cosserat rod computations for single filaments.

Folklore and Convention We embed our continuum mechanical models in an ab-
stract three-dimensional Euclidean space E

3. In this space, we take {e1, e2, e3} to be a
fixed orthonormal basis (ONB). Such an ONB induces an isomorphism ie : E3 → R

3,
a �→ ie(a)= ā= (ā1, ā2, ā3) with āj = a · ej , j = 1,2,3. Because we are operating with
different bases, it is important to us to always distinguish between the vectors a ∈ E

3 and
their component tuples ā ∈ R

3 in the arbitrary, but fixed ONB {e1, e2, e3}. This is moti-
vated largely by the fact that we also introduce, as a component of the Cosserat rod theory,
a temporally and spatially (along the rod) varying director basis {d1,d2,d3}. The compo-
nents of a vector a in this basis are denoted as a= (a1, a2, a3). The canonical basis of R3

(that is, the component tuples of any ONB in relation to itself) is denoted by e1, e2, e3.
We use a tensor calculus that is oriented on the calculus of Antman [32]. That is, we

consistently use the point · for scalar products and tensor-vector operations; we make no
distinction between vectors of E

3 and their adjoints; and, consequently, no distinction
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between row and column vectors of R3. In contrast to [32], however, we use ⊗ in place of
a blank space for tensor products. 3× 3-matrices are identified with tensors having values
in R

3 ⊗ R
3 and are frequently, with respect to a basis, the components of tensors with

values in E
3 ⊗ E

3. For all further details of our selected calculus, we refer the reader to
[32]. We use a generalized summation convention in which Latin indices run between 1
and 3 and Greek indices, between 1 and 2.

Because we are mainly examining modeling aspects, we generally assume, for the
needed manipulations, that there is sufficient differentiability and invertibility—as was
just needed—and we do not usually critically reflect upon these points. This does not mean
that we consider such reflections superfluous, or that all models we examine have classical
solutions. Quantities are always introduced with their SI units, unless this is completely
trivial (or forgotten!). Frequently, this clarifies their physical significance better than many
words.

4.1 Cosserat Rod Theory

The Cosserat rod theory describes a filament as a spatial curve with oriented cross-sections.
This results in a 1D manifold embedded in 3D, to which an element of the rotation group
SO(3) is differentiably assigned at each point. The theory is characterized by 1D balances
for linear and angular momentum, which result from 3D continuum mechanics by aver-
aging over the cross-sectional areas and restricting degrees of freedom. These restrictions
mean that a re-orientation of the cross-sections can indeed be described, but not a genuine
deformation that overcomes their planarity. We largely follow [32] in introducing the the-
ory in a material parameterization (Lagrangian description), but we place a general and
spatial variant (Eulerian description) on an equal footing alongside it. We take pains to
present the theory as self-contained and reflect upon its embedding in 3D continuum me-
chanics as little as possible. Nevertheless, this embedding can be undertaken in order to
thereby identify all elements of the theory in 3D continuum mechanics.

4.1.1 Material Description

Reference State A Cosserat rod or filament is described in its reference state by a curve
r◦ : (sa, sb)→ E

3 and two normalized, orthogonal vectors d◦α : (sa, sb)→ E
3, which are

referred to as directors.
One also defines d◦3 = d◦1 × d◦2, so that the directors form a right-handed orthonormal

system. The reference state can be assumed for any given point in time, but this is not
actually imperative. The interval (sa, sb)⊂ R addresses the section of the filament whose
dynamic is to be subsequently described. A parameter s ∈ (sa, sb) addresses the materially-
determined cross-section of the filament to be modeled. For our applications concerning
filament dynamics, we require that d◦3 = ∂sr◦ and ∂sd◦i = 0 for the reference state. The
geometry and material models formulated in Sect. 4.2 are attuned to this reference state.
More precisely, they ensure an absence of tension and torque in the reference state. With
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Fig. 1 Cosserat rod, consisting
of curve and director triad
(Graphic: Steffen Grützner,
Fraunhofer ITWM)

these assumptions, we select, in particular, an arc-length parameterization of the reference
state, but only of the reference state.

Kinematics At an arbitrary point in time t , the state of the rod is defined by the curve
r(·, t) and the orthonormal directors dα(·, t), where dα · dβ = δαβ . The curve describes
the position and the directors describe the orientation of the cross-sections addressed by s
(Fig. 1). Using the consistently applied definition d3 = d1×d2, the directors form a right-
handed orthonormal system at all times. Both the referential linking of d3 with the tangent
∂sr and the arc-length parameterization, however, are generally not valid in a moving state.

The velocity and tangent of the rod are characterized by the vector fields

∂tr= v, ∂sr= τ .

Because the directors form a right-handed orthonormal system, there exist also unambigu-
ous vector fields κ (1/m) (curvature) and ω (1/s) (angular velocity), so that the equations

∂tdi = ω× di , ∂sdi = κ × di

are valid. These vector fields describe the change in the triad over time, and along the
curve. By changing the order of the partial derivatives with respect to t and s, one obtains
the following compatibility relations:

∂tτ = ∂sv, ∂tκ = ∂sω+ω× κ .
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In order to use the Cosserat rod theory in specific applications, it proves helpful to
represent vector fields and model equations partially mixed in two basis systems (external
basis and director basis). The change from the invariant formulation to a fixed external
basis {e1, e2, e3} is, in this instance, trivial. The transition from the external to the director
basis {d1,d2,d3} can always be accomplished technically using the following calculus.
As agreed, for an arbitrary vector field a ∈ E

3 of the rod, ā ∈ R
3 and a ∈ R

3 denote the
component tuples relative to the external basis or the director basis. The director basis is
transformed with the rotation

D= ei ⊗ di =Dijei ⊗ ej ∈ E
3 ⊗E

3 with Dij = di · ej

into the external basis. The orthogonal matrix D is assigned to the components Dij of this
rotation. If one now considers an arbitrary vector field of the rod, then

D · ā= a, D · ∂t ā= ∂ta+ω× a, D · ∂s ā= ∂sa+ κ × a.

Moreover, the kinematic base equations for the directors can be transformed into corre-
sponding equations for the rotation matrix:

∂tD=−ω× D, ∂sD=−κ × D.

This formulation of the kinematics also serves as the starting point for other representations
of the rotation group (Euler angles, unit quaternions, rotation vectors), each of which has
its merits, depending on the application.

The fundamental deformation variables for the formulation of objective material laws
are the component tuples τ and κ of tangent and curvature in the director basis. More
precisely, τ1 and τ2 quantify shearing, τ3, strain, κ1 and κ2, bending, and κ3, torsion.
Moreover, with

e= ‖τ‖

we introduce a further strain measure that refers solely to the curve.

Dynamics Balancing linear and angular momentum (dynamic equations) for a rod leads
to the following generalized forms:

(ρA)∂tv= ∂sn+ k, ∂th= ∂sm+ τ × n+ l.

The line density of the rod (ρA) (kg/m) in the reference state is traditionally designated
using a slightly confusing symbol that suggests a product. When embedded in 3D contin-
uum mechanics, it results in the integral of the density over the cross-section of the rod
in the reference state, and is thus dependent on the filament parameter s, but not on the
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time t . The angular momentum line density h (kg m/s) is described as a function of the re-
maining base quantities of our theory, in particular, of the angular velocity (see geometric
modeling, Sect. 4.2.1). The internal stress forces n (N) and torques m (N m) are mod-
eled via suitable material laws as functions of the internal variables. Section 4.2.2 consists
primarily of a discussion of two types of such material laws—elastic and viscous. In the
dynamic equations, k (N/m) and l (N) denote line force density and line torque density
for modeling the external force and torque effects on the rod. Each of these can depend
on different internal variables and thus decisively impact the coupling of the dynamic and
kinematic equations. In the following discussion, we generally restrict ourselves to models
with no external moment effects; that is, l= 0. Ultimately, geometric modeling, material
laws, and external forces are the primary determinants of the type of PDE system.

4.1.2 General and Spatial Description
So far, the entire theory has been formulated in a Lagrangian description; that is, the pa-
rameter s ∈ (sa, sb) addresses a material point (or cross-section) of the rod. Except for
the orientation and a constant, the parameterization is then completely determined by re-
quiring the arc-length parameterization of the reference state. This is not essential, but it
simplifies much of the treatment. As we show below, a simple typing concept for the the-
ory’s base quantities can be used to formulate the model equations very easily in any other
time-dependent parameterization. Without doubt, the most important application case is
the spatial description (Eulerian description), in which, for all times, the transformation is
made to an arc-length parameterization.

Parametrizations Suitable time-dependent re-parameterizations can be introduced with
bijective transformations

φ(·, t) : (sa, sb)→
(
ϕa(t), ϕb(t)

)
, s �→ φ(s, t).

In order to define the transformation behavior of the different fields of the Cosserat rod
theory, we introduce the term type-n-quantity. A type-n-quantity, n ∈ Z, is transformed as
follows:

jn(s, t)f̃
(
φ(s, t), t

)= f (s, t), j = ∂sφ.

Here, f (s, t) characterizes a type-n-quantity in the material parameterization (Lagrangian
description) and f̃ (ϕ, t) characterizes the associated field in the new parameterization.
For the different fields of our theory, we specify that r, di , v, ω, n, m are to be
treated as type-0-quantities and τ , κ , k, l, (ρA), h as type-1-quantities. This specifi-
cation allows the various quantities to retain their physical character and defining inter-
relationships (point-related observables, densities, derivatives, etc.) in the transformation.
Time-independent re-parameterizations do not disturb the material character of the param-
eterization, nor do they change the form of the base equations. In contrast, time-dependent
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