Danh mục tài liệu

Bài giảng Các phương pháp phân tích định lượng: Biến độc lập định tính (Biến giả)

Số trang: 16      Loại file: pdf      Dung lượng: 387.77 KB      Lượt xem: 12      Lượt tải: 0    
Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Bài giảng Các phương pháp phân tích định lượng: Biến độc lập định tính (Biến giả). Bài này trình bày những nội dung cụ thể sau: Hồi qui một biến định lượng và một biến định tính có 2 phạm trù/đặc tính, các thức xây dựng biến giả, hồi qui một biến định lượng và một biến định tính có nhiều phạm trù/đặc tính, hồi qui một biến định lượng và 2 biến định tính,... Mời các bạn cùng tham khảo.
Nội dung trích xuất từ tài liệu:
Bài giảng Các phương pháp phân tích định lượng: Biến độc lập định tính (Biến giả) BIẾN ĐỘC LẬP ĐỊNH TÍNH (BIẾN GIẢ)GV : Đinh Công Khải – FETPMôn: Các Phương Pháp Định Lượng Giới thiệu chung Các biến độc lập có thể là những biến định tính được dùng để giải thích biến Y ví dụ như giới tính, chủng tộc, tôn giáo, khu vực địa lý, bất ổn kinh tế hay chính trị, sự thay đổi chính sách,… Biến định tính hay còn được gọi biến giả, biến chỉ định, biến nhị phân, biến phân loại hay phạm trù (giá trị 1 biểu thị sự xuất hiện một tính chất; giá trị 0 khi không có tính chất đó). Giới thiệu chung Yi = α1 + α2Di + ui (phân tích phương sai ANOVA) Y= mức lương năm của một giáo sư đại học Di = 1 nếu là nam; 0 nếu khác Mức lương trung bình của một giáo sư đại học là nữ: E(Yi|Di = 0) = α1; Mức lương trung bình của một giáo sư đại học là nam: E(Yi|Di = 1) = α1 + α2; Yˆi = 18,0 + 3,28 Di (ĐVT: 1000 USD) t (57,54) (7,44) R2 = 0,87 Hồi qui một biến định lượng và một biến định tính có 2 phạm trù/đặc tính Yi = α1 + α2Di + βXi + ui (phân tích tích sai ANCOVA) Y = mức lương năm của một giáo sư đại học X = số năm kinh nghiệm giảng dạy Di = 1 nếu là nam; 0 nếu khác. Lương trung bình của một giáo sư đại học là nữ: E(Yi|Xi, Di = 0) = α1 + βXi; Lương trung bình của một giáo sư đại học là nam: E(Yi|Xi, Di = 1) = (α1 + α2) + βXi; Các thức xây dựng biến giả Giả sử, chúng ta cần xây dựng biến giả để phân biệt giới tính nam và nữ D2i = 1 nếu giáo sư là nam; = 0 nếu khác. D3i = 1 nếu giáo sư là nữ; = 0 nếu khác. Yi = α1 + α2D2i + α3D3i + βXi + ui D2 và D3 sẽ có hiện tượng đa cộng tuyến hoàn hảo Nếu biến định tính có m phạm trù, chỉ cần đưa (m-1) biến giả vào mô hình Các thức xây dựng biến giả Việc giải thích kết quả hồi qui của biến giả phụ thuộc vào giá trị 1và 0 được gán cho biến giả như thế nào. Yi = α’1 + α’2Di + βXi + ui Di = 1 nếu là nữ; 0 nếu khác. Lương trung bình của một giáo sư đại học là nam: E(Yi|Xi, Di = 0) = α’1 + βXi; Lương trung bình của một giáo sư đại học là nữ: E(Yi|Xi, Di = 1) = (α’1 + α’2) + βXi; (α’2 < 0) Các thức xây dựng biến giả Nhóm phạm trù hay phân loại được gán cho giá trị 0 thường được coi là phạm trù cơ sở/mốc/kiểm soát/ tham chiếu. α2 được gọi là hệ số tung độ gốc chênh lệch (sự khác biệt giữa giá trị tung độ gốc của phạm trù nhận giá trị 1 và giá trị tung độ gốc của phạm trù nhận giá trị 0) Hồi qui một biến định lượng và một biến định tính có nhiều phạm trù/đặc tính Yi = α1 + α2D2i + α3D3i + βXi + ui Y = chi tiêu y tế hàng năm X = thu nhập hàng năm. D1i = 1 nếu là có trình độ dưới trung học; 0 nếu khác. D2i = 1 nếu là có trình độ trung học; 0 nếu khác. D3i = 1 nếu là có trình độ từ đại học trở lên; 0 nếu khác. E(Yi|Xi, D2i = 0, D3i = 0 ) = α1 + βXi; E(Yi|Xi, D2i = 1, D3i = 0) = (α1 + α2) + βXi; E(Yi|Xi, D2i = 0, D3i = 1) = (α1 + α3) + βXi Hồi qui một biến định lượng và 2 biến định tính Yi = α1 + α2D2i + α3D3i + βXi + ui Y = lương hàng năm X = số năm kinh nghiệm giảng dạy D2i = 1 nếu là nam; 0 nếu khác. D3i = 1 nếu là da trắng; 0 nếu khác. Hồi qui một biến định lượng và 2 biến định tính Mức lương trung bình của giáo sư nữ da đen: E(Yi|Xi, D2i = 0, D3i = 0 ) = α1 + βXi; Mức lương trung bình của giáo sư nam da đen: E(Yi|Xi, D2i = 1, D3i = 0) = (α1 + α2) + βXi; Mức lương trung bình của giáo sư nữ da trắng: E(Yi|Xi, D2i = 0, D3i = 1) = (α1 + α3) + βXi Mức lương trung bình của giáo sư nam da trắng: E(Yi|Xi, D2i = 1, D3i = 1) = (α1 + α2 +α3) + βXi Kiểm định tính ổn định cấu trúc của các mô hình hồi qui Yi = α1 + α2 Xi + u1i (thời kỳ tái thiết) Yi = β1 + β2 Xi + u2i (thời kỳ hậu tái thiết) Y = tiết kiệm; X = thu nhập. Các trường hợp: α1 = β1 và α2 = β2; hồi qui trùng khớp. α1 ≠ β1 và α2 = β2; hồi qui song song. α1 = β1 và α2 ≠ β2; hồi qui đồng quy. α1 ≠ β1 và α2 ≠ β2; hồi qui không giống nhau. Kiểm định tính ổn định cấu trúc của các mô hình hồi qui Y^i = -0,27 + 0,047 Xi (thời kỳ tái thiết) Y^i = -1,75 + 0,15 Xi (thời kỳ hậu tái thiết) Y = tiết kiệm; X = thu nhập. So sánh 2 hồi qui: Phương pháp biến giả Yi = α1 + α2D2i + β1Xi + β2(Xi D2i) + ui D2i = 1 nếu là thời kỳ tái thiết; 0 nếu khác D3i = 1 nếu là thời kỳ hậu tái thiết; 0 nếu khác. Tiết kiệm trung bình thời kỳ tái thiết: E(Yi|Xi, D2i = 1) = (α1 + α2)+ (β1+β2)Xi; Tiết kiệm trung bình thời kỳ hậu tái thiết: E(Yi|Xi, D2i = 0) = α1 + β1Xi; Kiểm định tính ổn định cấu trúc của các mô hình hồi qui Ví dụ Y^i = -1,75 + 1,48 D2i + 0,15 Xi – 0,1( ...

Tài liệu có liên quan: