Bài giảng Đại số tuyến tính: Không gian véctơ Rn - Ts. Lê Xuân Trường
Số trang: 18
Loại file: pdf
Dung lượng: 187.78 KB
Lượt xem: 21
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Trong bài giảng này trình bày về không gian véctơ Rn với các nội dung như: không gian Rn, tính chất của không gian véctơ Rn, tích vô hướng, góc và khoảng cách, tổ hợp tuyến tính, biểu thị tuyến tính,... Mời các bạn cùng tham khảo.
Nội dung trích xuất từ tài liệu:
Bài giảng Đại số tuyến tính: Không gian véctơ Rn - Ts. Lê Xuân Trường KHÔNG GIAN VÉCTƠ Rn Ts. Lê Xuân Trường Khoa Toán Thống KêTs. Lê Xuân Trường (Khoa Toán Thống Kê) KHÔNG GIAN VÉCTƠ Rn 1 / 18 Không gian Rn Không gian Rn : Rn = (x1 , x2 , ..., xn ) : xi ∈ R, i = 1, n . Mỗi phần tử x = (x1 , x2 , ..., xn ) của Rn được gọi là một véctơ. Cộng và trừ hai véctơ: (x1 , x2 , ..., xn ) ± (y1 , y2 , ..., yn ) = (x1 ± y1 , x2 ± y2 , ..., xn ± yn ) Ví dụ: (2, 3, −4, 5) + (−1, 0, 5, 7) = (1, 3, 1, 12) Nhân véctơ với một số k. (x1 , x2 , ..., xn ) = (kx1 , kx2 , ..., kxn ) Ví dụ: 2.(3, −5, 1) = (6, −10, 2)Ts. Lê Xuân Trường (Khoa Toán Thống Kê) KHÔNG GIAN VÉCTƠ Rn 2 / 18 Tính chất Với x, y ∈ Rn và α, β ∈ R, ta có x + y = y + x (giao hoán) (x + y ) + z = x + (y + z ) (kết hợp) x + θ = x, trong đó θ = (0, 0, ..., 0) ∈ Rn x + (−x ) = θ, với −x = (−x1 , −x2 , ..., −xn ) ∈ Rn α(x + y ) = αx + αy (α + β)x = αx + βy (αβ)x = α( βx ) 1.x = xTs. Lê Xuân Trường (Khoa Toán Thống Kê) KHÔNG GIAN VÉCTƠ Rn 3 / 18 Tích vô hướng u = (x1 , x2 , ..., xn ), v = (y1 , y2 , ..., yn ) ∈ Rn . Tích vô hướng của u và v được cho bởi u.v = x1 y1 + x2 y2 + · · ·xn yn Ví dụ: u = (−2, 3, 1) v = (3, 5, 4) u.v = (−2).(3) + 3.5 + 1.4 = 13Ts. Lê Xuân Trường (Khoa Toán Thống Kê) KHÔNG GIAN VÉCTƠ Rn 4 / 18 Góc và khoảng cách Cho u = (x1 , x2 , ..., xn ) và v = (y1 , y2 , ..., yn ). Góc α giữa hai véctơ u và v được xác định bởi u.v cos(α) = √ √ u.u v .v Khoảng cách giữa u và v !1/2 n d (u, v ) = ∑ (yi − xi )2 i =1Ts. Lê Xuân Trường (Khoa Toán Thống Kê) KHÔNG GIAN VÉCTƠ Rn 5 / 18 Tổ hợp tuyến tính, biểu thị tuyến tính Định nghĩa Trong không gian Rn , cho các véctơ u1 , u2 , ..., um và v . Nếu tồn tại các hằng số λ1 , λ2 , ..., λm sao cho v = λ 1 u1 + λ 2 u2 + · · · + λ m um , thì ta nói v biểu thị tuyến tính được qua các véctơ u1 , u2 , ..., um hay v là một tổ hợp tuyến tính của u1 , u2 , ..., um . Ví dụ Với u1 = (1, 4), u2 = (3, 2) và v = (9, 16), ta có v = 3u1 + 2u2 nên v là tổ hợp tuyến tính của u1 , u2 .Ts. Lê Xuân Trường (Khoa Toán Thống Kê) KHÔNG GIAN VÉCTƠ Rn 6 / 18 Tổ hợp tuyến tính, biểu thị tuyến tính Ví dụ Trong R3 cho các véctơ u1 = (2, 0, 3), u2 = (0, 2, −1), u3 = (2, 2, 2). Tìm m để véctơ v = (5, −2, m ) biểu thị tuyến tính được qua ba véctơ đã cho. Nhận xét 1: Với một véctơ bất kỳ v và một hệ véctơ cho trước u1 , u2 , ..., un , có thể xảy ra ba trường hợp sau v không biểu thị tuyến tính được qua hệ u1 , u2 , ..., un có duy nhất một cách biểu thị tuyến tính v qua u1 , u2 , ..., un có vô số cách biểu thị tuyến tính v qua u1 , u2 , ..., un Nhận xét 2: Véctơ θ có ít nhất một cách biểu thị tuyến tính qua một hệ véctơ bất kỳ, đó là cách biểu thị tầm thường θ = 0u1 + 0u2 + · · · + 0un .Ts. Lê Xuân Trường (Khoa Toán Thống Kê) KHÔNG GIAN VÉCTƠ Rn 7 / 18 Phụ thuộc tuyến tính và độc lập tuyến tính Định nghĩa Hệ véctơ {u1 , u2 , ..., um } được gọi là độc lập tuyến tính nếu véctơ θ chỉ có duy nhất cách biểu thị tuyến tính tầm thường qua hệ. Ngược lại, ta nói hệ véctơ là phụ thuộc tuyến tính. Ví dụ Xét hệ các véctơ sau u1 = (1, 2), u2 = (3, 4), u3 = (−2, 1). Ta có 11 2 θ= u1 − u2 − u3 5 5 nên các véctơ u1 , u2 , u3 phụ thuộc tuyến tính.Ts. Lê Xuân Trường (Khoa Toán Thống Kê) KHÔNG GIAN VÉCTƠ Rn 8 / 18 Phụ thuộc tuyến tính và độc lập tuy ...
Nội dung trích xuất từ tài liệu:
Bài giảng Đại số tuyến tính: Không gian véctơ Rn - Ts. Lê Xuân Trường KHÔNG GIAN VÉCTƠ Rn Ts. Lê Xuân Trường Khoa Toán Thống KêTs. Lê Xuân Trường (Khoa Toán Thống Kê) KHÔNG GIAN VÉCTƠ Rn 1 / 18 Không gian Rn Không gian Rn : Rn = (x1 , x2 , ..., xn ) : xi ∈ R, i = 1, n . Mỗi phần tử x = (x1 , x2 , ..., xn ) của Rn được gọi là một véctơ. Cộng và trừ hai véctơ: (x1 , x2 , ..., xn ) ± (y1 , y2 , ..., yn ) = (x1 ± y1 , x2 ± y2 , ..., xn ± yn ) Ví dụ: (2, 3, −4, 5) + (−1, 0, 5, 7) = (1, 3, 1, 12) Nhân véctơ với một số k. (x1 , x2 , ..., xn ) = (kx1 , kx2 , ..., kxn ) Ví dụ: 2.(3, −5, 1) = (6, −10, 2)Ts. Lê Xuân Trường (Khoa Toán Thống Kê) KHÔNG GIAN VÉCTƠ Rn 2 / 18 Tính chất Với x, y ∈ Rn và α, β ∈ R, ta có x + y = y + x (giao hoán) (x + y ) + z = x + (y + z ) (kết hợp) x + θ = x, trong đó θ = (0, 0, ..., 0) ∈ Rn x + (−x ) = θ, với −x = (−x1 , −x2 , ..., −xn ) ∈ Rn α(x + y ) = αx + αy (α + β)x = αx + βy (αβ)x = α( βx ) 1.x = xTs. Lê Xuân Trường (Khoa Toán Thống Kê) KHÔNG GIAN VÉCTƠ Rn 3 / 18 Tích vô hướng u = (x1 , x2 , ..., xn ), v = (y1 , y2 , ..., yn ) ∈ Rn . Tích vô hướng của u và v được cho bởi u.v = x1 y1 + x2 y2 + · · ·xn yn Ví dụ: u = (−2, 3, 1) v = (3, 5, 4) u.v = (−2).(3) + 3.5 + 1.4 = 13Ts. Lê Xuân Trường (Khoa Toán Thống Kê) KHÔNG GIAN VÉCTƠ Rn 4 / 18 Góc và khoảng cách Cho u = (x1 , x2 , ..., xn ) và v = (y1 , y2 , ..., yn ). Góc α giữa hai véctơ u và v được xác định bởi u.v cos(α) = √ √ u.u v .v Khoảng cách giữa u và v !1/2 n d (u, v ) = ∑ (yi − xi )2 i =1Ts. Lê Xuân Trường (Khoa Toán Thống Kê) KHÔNG GIAN VÉCTƠ Rn 5 / 18 Tổ hợp tuyến tính, biểu thị tuyến tính Định nghĩa Trong không gian Rn , cho các véctơ u1 , u2 , ..., um và v . Nếu tồn tại các hằng số λ1 , λ2 , ..., λm sao cho v = λ 1 u1 + λ 2 u2 + · · · + λ m um , thì ta nói v biểu thị tuyến tính được qua các véctơ u1 , u2 , ..., um hay v là một tổ hợp tuyến tính của u1 , u2 , ..., um . Ví dụ Với u1 = (1, 4), u2 = (3, 2) và v = (9, 16), ta có v = 3u1 + 2u2 nên v là tổ hợp tuyến tính của u1 , u2 .Ts. Lê Xuân Trường (Khoa Toán Thống Kê) KHÔNG GIAN VÉCTƠ Rn 6 / 18 Tổ hợp tuyến tính, biểu thị tuyến tính Ví dụ Trong R3 cho các véctơ u1 = (2, 0, 3), u2 = (0, 2, −1), u3 = (2, 2, 2). Tìm m để véctơ v = (5, −2, m ) biểu thị tuyến tính được qua ba véctơ đã cho. Nhận xét 1: Với một véctơ bất kỳ v và một hệ véctơ cho trước u1 , u2 , ..., un , có thể xảy ra ba trường hợp sau v không biểu thị tuyến tính được qua hệ u1 , u2 , ..., un có duy nhất một cách biểu thị tuyến tính v qua u1 , u2 , ..., un có vô số cách biểu thị tuyến tính v qua u1 , u2 , ..., un Nhận xét 2: Véctơ θ có ít nhất một cách biểu thị tuyến tính qua một hệ véctơ bất kỳ, đó là cách biểu thị tầm thường θ = 0u1 + 0u2 + · · · + 0un .Ts. Lê Xuân Trường (Khoa Toán Thống Kê) KHÔNG GIAN VÉCTƠ Rn 7 / 18 Phụ thuộc tuyến tính và độc lập tuyến tính Định nghĩa Hệ véctơ {u1 , u2 , ..., um } được gọi là độc lập tuyến tính nếu véctơ θ chỉ có duy nhất cách biểu thị tuyến tính tầm thường qua hệ. Ngược lại, ta nói hệ véctơ là phụ thuộc tuyến tính. Ví dụ Xét hệ các véctơ sau u1 = (1, 2), u2 = (3, 4), u3 = (−2, 1). Ta có 11 2 θ= u1 − u2 − u3 5 5 nên các véctơ u1 , u2 , u3 phụ thuộc tuyến tính.Ts. Lê Xuân Trường (Khoa Toán Thống Kê) KHÔNG GIAN VÉCTƠ Rn 8 / 18 Phụ thuộc tuyến tính và độc lập tuy ...
Tìm kiếm theo từ khóa liên quan:
Toán cao cấp Đại số tuyến tính Bài giảng Đại số tuyến tính Không gian véctơ Tích vô hướng Tổ hợp tuyến tínhTài liệu có liên quan:
-
Cách tính nhanh giá trị riêng của ma trận vuông cấp 2 và cấp 3
4 trang 285 0 0 -
1 trang 265 1 0
-
Hướng dẫn giải bài tập Đại số tuyến tính: Phần 1
106 trang 262 0 0 -
Giáo trình Phương pháp tính: Phần 2
204 trang 240 0 0 -
Hình thành hệ thống điều khiển trình tự xử lý các toán tử trong một biểu thức logic
50 trang 203 0 0 -
Giáo trình Toán kinh tế: Phần 1 (dành cho hệ Cao đẳng chuyên ngành Kế toán)
146 trang 140 0 0 -
4 trang 104 0 0
-
Đại số tuyến tính - Bài tập chương II
5 trang 100 0 0 -
Giáo trình Toán học cao cấp (tập 2) - NXB Giáo dục
213 trang 98 0 0 -
Kỷ yếu Kỳ thi Olympic Toán học sinh viên - học sinh lần thứ 29 (Năm 2023)
145 trang 90 0 0