Danh mục tài liệu

Bài giảng Đại số tuyến tính: Không gian véctơ Rn - Ts. Lê Xuân Trường

Số trang: 18      Loại file: pdf      Dung lượng: 187.78 KB      Lượt xem: 21      Lượt tải: 0    
Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Trong bài giảng này trình bày về không gian véctơ Rn với các nội dung như: không gian Rn, tính chất của không gian véctơ Rn, tích vô hướng, góc và khoảng cách, tổ hợp tuyến tính, biểu thị tuyến tính,... Mời các bạn cùng tham khảo.
Nội dung trích xuất từ tài liệu:
Bài giảng Đại số tuyến tính: Không gian véctơ Rn - Ts. Lê Xuân Trường KHÔNG GIAN VÉCTƠ Rn Ts. Lê Xuân Trường Khoa Toán Thống KêTs. Lê Xuân Trường (Khoa Toán Thống Kê) KHÔNG GIAN VÉCTƠ Rn 1 / 18 Không gian Rn Không gian Rn : Rn = (x1 , x2 , ..., xn ) : xi ∈ R, i = 1, n . Mỗi phần tử x = (x1 , x2 , ..., xn ) của Rn được gọi là một véctơ. Cộng và trừ hai véctơ: (x1 , x2 , ..., xn ) ± (y1 , y2 , ..., yn ) = (x1 ± y1 , x2 ± y2 , ..., xn ± yn ) Ví dụ: (2, 3, −4, 5) + (−1, 0, 5, 7) = (1, 3, 1, 12) Nhân véctơ với một số k. (x1 , x2 , ..., xn ) = (kx1 , kx2 , ..., kxn ) Ví dụ: 2.(3, −5, 1) = (6, −10, 2)Ts. Lê Xuân Trường (Khoa Toán Thống Kê) KHÔNG GIAN VÉCTƠ Rn 2 / 18 Tính chất Với x, y ∈ Rn và α, β ∈ R, ta có x + y = y + x (giao hoán) (x + y ) + z = x + (y + z ) (kết hợp) x + θ = x, trong đó θ = (0, 0, ..., 0) ∈ Rn x + (−x ) = θ, với −x = (−x1 , −x2 , ..., −xn ) ∈ Rn α(x + y ) = αx + αy (α + β)x = αx + βy (αβ)x = α( βx ) 1.x = xTs. Lê Xuân Trường (Khoa Toán Thống Kê) KHÔNG GIAN VÉCTƠ Rn 3 / 18 Tích vô hướng u = (x1 , x2 , ..., xn ), v = (y1 , y2 , ..., yn ) ∈ Rn . Tích vô hướng của u và v được cho bởi u.v = x1 y1 + x2 y2 + · · ·xn yn Ví dụ: u = (−2, 3, 1) v = (3, 5, 4) u.v = (−2).(3) + 3.5 + 1.4 = 13Ts. Lê Xuân Trường (Khoa Toán Thống Kê) KHÔNG GIAN VÉCTƠ Rn 4 / 18 Góc và khoảng cách Cho u = (x1 , x2 , ..., xn ) và v = (y1 , y2 , ..., yn ). Góc α giữa hai véctơ u và v được xác định bởi u.v cos(α) = √ √ u.u v .v Khoảng cách giữa u và v !1/2 n d (u, v ) = ∑ (yi − xi )2 i =1Ts. Lê Xuân Trường (Khoa Toán Thống Kê) KHÔNG GIAN VÉCTƠ Rn 5 / 18 Tổ hợp tuyến tính, biểu thị tuyến tính Định nghĩa Trong không gian Rn , cho các véctơ u1 , u2 , ..., um và v . Nếu tồn tại các hằng số λ1 , λ2 , ..., λm sao cho v = λ 1 u1 + λ 2 u2 + · · · + λ m um , thì ta nói v biểu thị tuyến tính được qua các véctơ u1 , u2 , ..., um hay v là một tổ hợp tuyến tính của u1 , u2 , ..., um . Ví dụ Với u1 = (1, 4), u2 = (3, 2) và v = (9, 16), ta có v = 3u1 + 2u2 nên v là tổ hợp tuyến tính của u1 , u2 .Ts. Lê Xuân Trường (Khoa Toán Thống Kê) KHÔNG GIAN VÉCTƠ Rn 6 / 18 Tổ hợp tuyến tính, biểu thị tuyến tính Ví dụ Trong R3 cho các véctơ u1 = (2, 0, 3), u2 = (0, 2, −1), u3 = (2, 2, 2). Tìm m để véctơ v = (5, −2, m ) biểu thị tuyến tính được qua ba véctơ đã cho. Nhận xét 1: Với một véctơ bất kỳ v và một hệ véctơ cho trước u1 , u2 , ..., un , có thể xảy ra ba trường hợp sau v không biểu thị tuyến tính được qua hệ u1 , u2 , ..., un có duy nhất một cách biểu thị tuyến tính v qua u1 , u2 , ..., un có vô số cách biểu thị tuyến tính v qua u1 , u2 , ..., un Nhận xét 2: Véctơ θ có ít nhất một cách biểu thị tuyến tính qua một hệ véctơ bất kỳ, đó là cách biểu thị tầm thường θ = 0u1 + 0u2 + · · · + 0un .Ts. Lê Xuân Trường (Khoa Toán Thống Kê) KHÔNG GIAN VÉCTƠ Rn 7 / 18 Phụ thuộc tuyến tính và độc lập tuyến tính Định nghĩa Hệ véctơ {u1 , u2 , ..., um } được gọi là độc lập tuyến tính nếu véctơ θ chỉ có duy nhất cách biểu thị tuyến tính tầm thường qua hệ. Ngược lại, ta nói hệ véctơ là phụ thuộc tuyến tính. Ví dụ Xét hệ các véctơ sau u1 = (1, 2), u2 = (3, 4), u3 = (−2, 1). Ta có 11 2 θ= u1 − u2 − u3 5 5 nên các véctơ u1 , u2 , u3 phụ thuộc tuyến tính.Ts. Lê Xuân Trường (Khoa Toán Thống Kê) KHÔNG GIAN VÉCTƠ Rn 8 / 18 Phụ thuộc tuyến tính và độc lập tuy ...