Bài giảng Giải tích cao cấp: Chương 3 - Lê Thái Duy
Số trang: 190
Loại file: pdf
Dung lượng: 2.09 MB
Lượt xem: 43
Lượt tải: 0
Xem trước 10 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Bài giảng Giải tích cao cấp: Chương 3 Phép tính vi phân hàm nhiều biến, cung cấp cho người đọc những kiến thức như: hàm nhiều biến; giới hạn-liên tục; đạo hàm-vi phân; cực trị; ứng dụng trong kinh tế. Mời các bạn cùng tham khảo!
Nội dung trích xuất từ tài liệu:
Bài giảng Giải tích cao cấp: Chương 3 - Lê Thái Duy GIẢI TÍCH CAO CẤP ( Mathematics B1 ) Giảng viên : Lê Thái Duy Website: http://staff.agu.edu.vn/ltduy Email : ltduyaguns@vnn.vn Tel : 0918614420 AN GIANG University Ngày 28 tháng 10 năm 2014 LaTex Giảng viên : Lê Thái Duy Website: http://staff.agu.edu.vn/ltduy GIẢI TÍCH CAO Email : ltduyaguns@vnn.vn Tel : CẤP 0918614420 ( Mathematics B1 ) GIẢI TÍCH CAO CẤP ( Mathematics B1 ) Giảng viên : Lê Thái Duy Website: http://staff.agu.edu.vn/ltduy Email : ltduyaguns@vnn.vn Tel : 0918614420 AN GIANG University Ngày 28 tháng 10 năm 2014 LaTex Giảng viên : Lê Thái Duy Website: http://staff.agu.edu.vn/ltduy GIẢI TÍCH CAO Email : ltduyaguns@vnn.vn Tel : CẤP 0918614420 ( Mathematics B1 ) BASIC MATHEMATICS Chương III. PHÉP TÍNH VI PHÂN HÀM NHIỀU BIẾN 1.HÀM NHIỀU BIẾN 2.GIỚI HẠN-LIÊN TỤC 3.ĐẠO HÀM-VI PHÂN 4.CỰC TRỊ 5.ỨNG DỤNG TRONG KINH TẾ LaTex Giảng viên : Lê Thái Duy Website: http://staff.agu.edu.vn/ltduy GIẢI TÍCH CAO Email : ltduyaguns@vnn.vn Tel : CẤP 0918614420 ( Mathematics B1 ) 1.HÀM NHIỀU BIẾN LaTex Giảng viên : Lê Thái Duy Website: http://staff.agu.edu.vn/ltduy GIẢI TÍCH CAO Email : ltduyaguns@vnn.vn Tel : CẤP 0918614420 ( Mathematics B1 ) 1.HÀM NHIỀU BIẾN Quy tắc F : D(⊂ Rn ) → R cho ứng mỗi bộ (x1 , x2 , ..., xn ) ∈ D với phần tử duy nhất y = F (x1 , x2 , ..., xn ) ∈ R ; LaTex Giảng viên : Lê Thái Duy Website: http://staff.agu.edu.vn/ltduy GIẢI TÍCH CAO Email : ltduyaguns@vnn.vn Tel : CẤP 0918614420 ( Mathematics B1 ) 1.HÀM NHIỀU BIẾN Quy tắc F : D(⊂ Rn ) → R cho ứng mỗi bộ (x1 , x2 , ..., xn ) ∈ D với phần tử duy nhất y = F (x1 , x2 , ..., xn ) ∈ R ;được gọi là hàm n biến xi (i = 1, n) LaTex Giảng viên : Lê Thái Duy Website: http://staff.agu.edu.vn/ltduy GIẢI TÍCH CAO Email : ltduyaguns@vnn.vn Tel : CẤP 0918614420 ( Mathematics B1 ) 1.HÀM NHIỀU BIẾN Quy tắc F : D(⊂ Rn ) → R cho ứng mỗi bộ (x1 , x2 , ..., xn ) ∈ D với phần tử duy nhất y = F (x1 , x2 , ..., xn ) ∈ R ;được gọi là hàm n biến xi (i = 1, n) D:Tập xác định của hàm F. LaTex Giảng viên : Lê Thái Duy Website: http://staff.agu.edu.vn/ltduy GIẢI TÍCH CAO Email : ltduyaguns@vnn.vn Tel : CẤP 0918614420 ( Mathematics B1 ) 1.HÀM NHIỀU BIẾN Quy tắc F : D(⊂ Rn ) → R cho ứng mỗi bộ (x1 , x2 , ..., xn ) ∈ D với phần tử duy nhất y = F (x1 , x2 , ..., xn ) ∈ R ;được gọi là hàm n biến xi (i = 1, n) D:Tập xác định của hàm F. Trong kg Oxyz, cho hàm 2 biến f: z = f (x, y ) có tập xác định Df . ...
Nội dung trích xuất từ tài liệu:
Bài giảng Giải tích cao cấp: Chương 3 - Lê Thái Duy GIẢI TÍCH CAO CẤP ( Mathematics B1 ) Giảng viên : Lê Thái Duy Website: http://staff.agu.edu.vn/ltduy Email : ltduyaguns@vnn.vn Tel : 0918614420 AN GIANG University Ngày 28 tháng 10 năm 2014 LaTex Giảng viên : Lê Thái Duy Website: http://staff.agu.edu.vn/ltduy GIẢI TÍCH CAO Email : ltduyaguns@vnn.vn Tel : CẤP 0918614420 ( Mathematics B1 ) GIẢI TÍCH CAO CẤP ( Mathematics B1 ) Giảng viên : Lê Thái Duy Website: http://staff.agu.edu.vn/ltduy Email : ltduyaguns@vnn.vn Tel : 0918614420 AN GIANG University Ngày 28 tháng 10 năm 2014 LaTex Giảng viên : Lê Thái Duy Website: http://staff.agu.edu.vn/ltduy GIẢI TÍCH CAO Email : ltduyaguns@vnn.vn Tel : CẤP 0918614420 ( Mathematics B1 ) BASIC MATHEMATICS Chương III. PHÉP TÍNH VI PHÂN HÀM NHIỀU BIẾN 1.HÀM NHIỀU BIẾN 2.GIỚI HẠN-LIÊN TỤC 3.ĐẠO HÀM-VI PHÂN 4.CỰC TRỊ 5.ỨNG DỤNG TRONG KINH TẾ LaTex Giảng viên : Lê Thái Duy Website: http://staff.agu.edu.vn/ltduy GIẢI TÍCH CAO Email : ltduyaguns@vnn.vn Tel : CẤP 0918614420 ( Mathematics B1 ) 1.HÀM NHIỀU BIẾN LaTex Giảng viên : Lê Thái Duy Website: http://staff.agu.edu.vn/ltduy GIẢI TÍCH CAO Email : ltduyaguns@vnn.vn Tel : CẤP 0918614420 ( Mathematics B1 ) 1.HÀM NHIỀU BIẾN Quy tắc F : D(⊂ Rn ) → R cho ứng mỗi bộ (x1 , x2 , ..., xn ) ∈ D với phần tử duy nhất y = F (x1 , x2 , ..., xn ) ∈ R ; LaTex Giảng viên : Lê Thái Duy Website: http://staff.agu.edu.vn/ltduy GIẢI TÍCH CAO Email : ltduyaguns@vnn.vn Tel : CẤP 0918614420 ( Mathematics B1 ) 1.HÀM NHIỀU BIẾN Quy tắc F : D(⊂ Rn ) → R cho ứng mỗi bộ (x1 , x2 , ..., xn ) ∈ D với phần tử duy nhất y = F (x1 , x2 , ..., xn ) ∈ R ;được gọi là hàm n biến xi (i = 1, n) LaTex Giảng viên : Lê Thái Duy Website: http://staff.agu.edu.vn/ltduy GIẢI TÍCH CAO Email : ltduyaguns@vnn.vn Tel : CẤP 0918614420 ( Mathematics B1 ) 1.HÀM NHIỀU BIẾN Quy tắc F : D(⊂ Rn ) → R cho ứng mỗi bộ (x1 , x2 , ..., xn ) ∈ D với phần tử duy nhất y = F (x1 , x2 , ..., xn ) ∈ R ;được gọi là hàm n biến xi (i = 1, n) D:Tập xác định của hàm F. LaTex Giảng viên : Lê Thái Duy Website: http://staff.agu.edu.vn/ltduy GIẢI TÍCH CAO Email : ltduyaguns@vnn.vn Tel : CẤP 0918614420 ( Mathematics B1 ) 1.HÀM NHIỀU BIẾN Quy tắc F : D(⊂ Rn ) → R cho ứng mỗi bộ (x1 , x2 , ..., xn ) ∈ D với phần tử duy nhất y = F (x1 , x2 , ..., xn ) ∈ R ;được gọi là hàm n biến xi (i = 1, n) D:Tập xác định của hàm F. Trong kg Oxyz, cho hàm 2 biến f: z = f (x, y ) có tập xác định Df . ...
Tìm kiếm theo từ khóa liên quan:
Bài giảng Giải tích cao cấp Giải tích cao cấp Phép tính vi phân hàm nhiều biến Vi phân hàm nhiều biến Hàm nhiều biếnTài liệu có liên quan:
-
Đề cương chi tiết học phần: Toán giải tích - ĐH Kinh tế-Kỹ thuật Công nghiệp
8 trang 140 0 0 -
Đề cương bài giảng Giải tích (Dùng cho hệ cao đẳng) - PGS.TS Tô Văn Ban
181 trang 75 0 0 -
Bài giảng Giải tích 2: Chương 1 - Hoàng Đức Thắng
35 trang 48 0 0 -
Bài giảng Toán cao cấp 2 (Phần Giải tích): Bài 3 - Nguyễn Phương
51 trang 48 0 0 -
Bài giảng Giải tích cao cấp: Chương 4 - Lê Thái Duy
112 trang 41 0 0 -
Bài giảng Giải tích cao cấp: Chương 1 - Lê Thái Duy
146 trang 41 0 0 -
Bài giảng Toán cao cấp A3: Chương 1 - Nguyễn Quốc Tiến
9 trang 40 0 0 -
Giáo trình Giải tích 2: Phần 1 - Nguyễn Đình Huy
117 trang 39 0 0 -
Giáo trình Giải tích 1 - Tạ Lê Lợi (chủ biên)
114 trang 39 0 0 -
Đề cương chi tiết học phần Toán cao cấp C2
10 trang 38 0 0