Giáo trình Giải tích 1 - Tạ Lê Lợi (chủ biên)
Số trang: 114
Loại file: pdf
Dung lượng: 1.84 MB
Lượt xem: 39
Lượt tải: 0
Xem trước 10 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Giáo trình này trình bày các kiến thức cơ bản nhất của giải tích hàm. Chương I trình bày các kiến thức cơ bản về không gian mêtric. Các chương II và III trình bày ngắn gọn về không gian định chuẩn, không gian Banach và lý thuyết toán tử tuyến tính liên tục. Chương IV trình bày các nguyên lý cơ bản của giải tích hàm. Chương V trình bày về tôpô yếu, toán tử liên hợp và toán tử compăc. Cuối cùng chương VI trình bày lý thuyết không gian Hilbert và các toán tử tuyến tính liên.
Nội dung trích xuất từ tài liệu:
Giáo trình Giải tích 1 - Tạ Lê Lợi (chủ biên) TRÖÔØNG ÑAÏI HOÏC ÑAØ LAÏT KHOA TOAÙN - TIN HOÏC TAÏ LEÂ LÔÏI GIAÛI TÍCH 1 (Giaùo Trình) -- Löu haønh noäi boä -- Ñaø Laït 2008 Höôùng daãn sinh vieân ñoïc giaùo trình Ñaây laø giaùo trình Giaûi tích 1 daønh cho sinh vieân naêm thöù nhaát ngaønh Toaùn hay ngaønh Toaùn Tin. Noäi dung ñeà caäp ñeán moät soá khaùi nieäm cô baûn nhaát cuûa giôùi haïn daõy vaø chuoãi soá thöïc, tính lieân tuïc, pheùp tính vi phaân vaø tích phaân cuûa haøm soá moät bieán soá thöïc. Ñeå ñoïc ñöôïc giaùo trình naøy sinh vieân chæ caàn bieát chuùt ít lyù thuyeát taäp hôïp vaø aùnh xaï, cuøng vôùi moät vaøi lyù luaän logic toaùn caên baûn (e.g. qui taéc tam ñoaïn luaän, phöông phaùp phaûn chöùng, phöông phaùp qui naïp). Giaùo trình ñöôïc trình baøy theo loái tuyeán tính, vaäy ngöôøi ñoïc laàn ñaàu neân ñoïc laàn löôït töøng phaàn theo thöù töï. Ñeå ñoïc moät caùch tích cöïc, sau caùc khaùi nieäm vaø ñònh lyù sinh vieân neân ñoïc kyõ caùc ví duï, laøm moät soá baøi taäp neâu lieàn ñoù. Ngoaøi ra hoïc toaùn phaûi laøm baøi taäp. Moät soá baøi taäp caên baûn nhaát cuûa moãi chöông ñöôïc neâu ôû phaàn cuoái cuûa giaùo trình. Veà nguyeân taéc neân ñoïc moïi phaàn cuûa giaùo trình. Tuy vaäy, coù theå neâu ôû ñaây moät soá ñieåm caàn löu yù ôû töøng chöông: I. Soá thöïc - Daõy soá. Laàn ñaàu ñoïc coù theå boû qua: khaùi nieäm giôùi haïn treân, giôùi haïn döôùi (ôû 2.4), tính khoâng ñeám ñöôïc cuûa R (muïc 4.5) II. Giôùi haïn vaø tính lieân tuïc. III. Pheùp tính vi phaân. Laàn ñaàu ñoïc coù theå boû qua: khaûo saùt tính loài (muïc 4.5), veõ ñöôøng cong (muïc 4.7). IV. Pheùp tính tích phaân. Kyõ thuaät tính tích phaân (muïc 1.4) neân ñoïc khi laøm baøi taäp. V. Chuoãi soá. Coù theå boû qua Ñònh lyù Riemann (muïc 1.4). Ñeå vieäc töï hoïc coù keát quaû toát sinh vieân neân tham khaûo theâm moät soá taøi lieäu khaùc coù noäi dung lieân quan (ñaëc bieät laø phaàn höôùng daãn giaûi caùc baøi taäp). Khoù coù theå neâu heát taøi lieäu neân tham khaûo, ôû ñaây chæ ñeà nghò caùc taøi lieäu sau (baèng tieáng Vieät): [1] Jean-Marier Monier, Giaûi tích 1 , NXB Giaùo duïc. [2] Y.Y. Liasko, A.C. Boâiatruc, IA. G. Gai, G.P. Goâloâvac, Giaûi tích toaùn hoïc - Caùc ví duï vaø caùc baøi toaùn, Taäp I vaø Phaàn I (Taäp II), NXB Ñaïi hoïc vaø trung hoïc chuyeân nghieäp. Ngoaøi ra, sinh vieân neân tìm hieåu vaø söû duïng moät soá phaàn meàm maùy tính hoã trôï cho vieäc hoïc vaø laøm toaùn nhö Maple, Mathematica,... Chuùc caùc baïn thaønh coâng! Giaûi tích 1 Taï Leâ Lôïi Muïc luïc Chöông I. Soá thöïc - Daõy soá 1. Soá thöïc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2. Daõy soá . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3. Caùc ñònh lyù cô baûn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 4. Caùc ví duï . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Chöông II. Giôùi haïn vaø tính lieân tuïc 1. Haøm soá . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2. Giôù haïn cuûa haøm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3. Haøm soá lieân tuïc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Chöông III. Pheùp tính vi phaân 1. Ñaïo haøm - Vi phaân . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2. Caùc ñònh lyù cô baûn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3. Ñaïo haøm caáp cao - Coâng thöùc Taylor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4. Moät soá öùng duïng . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Chöông IV. Pheùp tính tích phaân 1. Nguyeân haøm - Tích phaân baát ñònh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 2. Tích phaân xaùc ñònh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3. Moät soá öùng duïng . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 4. ...
Nội dung trích xuất từ tài liệu:
Giáo trình Giải tích 1 - Tạ Lê Lợi (chủ biên) TRÖÔØNG ÑAÏI HOÏC ÑAØ LAÏT KHOA TOAÙN - TIN HOÏC TAÏ LEÂ LÔÏI GIAÛI TÍCH 1 (Giaùo Trình) -- Löu haønh noäi boä -- Ñaø Laït 2008 Höôùng daãn sinh vieân ñoïc giaùo trình Ñaây laø giaùo trình Giaûi tích 1 daønh cho sinh vieân naêm thöù nhaát ngaønh Toaùn hay ngaønh Toaùn Tin. Noäi dung ñeà caäp ñeán moät soá khaùi nieäm cô baûn nhaát cuûa giôùi haïn daõy vaø chuoãi soá thöïc, tính lieân tuïc, pheùp tính vi phaân vaø tích phaân cuûa haøm soá moät bieán soá thöïc. Ñeå ñoïc ñöôïc giaùo trình naøy sinh vieân chæ caàn bieát chuùt ít lyù thuyeát taäp hôïp vaø aùnh xaï, cuøng vôùi moät vaøi lyù luaän logic toaùn caên baûn (e.g. qui taéc tam ñoaïn luaän, phöông phaùp phaûn chöùng, phöông phaùp qui naïp). Giaùo trình ñöôïc trình baøy theo loái tuyeán tính, vaäy ngöôøi ñoïc laàn ñaàu neân ñoïc laàn löôït töøng phaàn theo thöù töï. Ñeå ñoïc moät caùch tích cöïc, sau caùc khaùi nieäm vaø ñònh lyù sinh vieân neân ñoïc kyõ caùc ví duï, laøm moät soá baøi taäp neâu lieàn ñoù. Ngoaøi ra hoïc toaùn phaûi laøm baøi taäp. Moät soá baøi taäp caên baûn nhaát cuûa moãi chöông ñöôïc neâu ôû phaàn cuoái cuûa giaùo trình. Veà nguyeân taéc neân ñoïc moïi phaàn cuûa giaùo trình. Tuy vaäy, coù theå neâu ôû ñaây moät soá ñieåm caàn löu yù ôû töøng chöông: I. Soá thöïc - Daõy soá. Laàn ñaàu ñoïc coù theå boû qua: khaùi nieäm giôùi haïn treân, giôùi haïn döôùi (ôû 2.4), tính khoâng ñeám ñöôïc cuûa R (muïc 4.5) II. Giôùi haïn vaø tính lieân tuïc. III. Pheùp tính vi phaân. Laàn ñaàu ñoïc coù theå boû qua: khaûo saùt tính loài (muïc 4.5), veõ ñöôøng cong (muïc 4.7). IV. Pheùp tính tích phaân. Kyõ thuaät tính tích phaân (muïc 1.4) neân ñoïc khi laøm baøi taäp. V. Chuoãi soá. Coù theå boû qua Ñònh lyù Riemann (muïc 1.4). Ñeå vieäc töï hoïc coù keát quaû toát sinh vieân neân tham khaûo theâm moät soá taøi lieäu khaùc coù noäi dung lieân quan (ñaëc bieät laø phaàn höôùng daãn giaûi caùc baøi taäp). Khoù coù theå neâu heát taøi lieäu neân tham khaûo, ôû ñaây chæ ñeà nghò caùc taøi lieäu sau (baèng tieáng Vieät): [1] Jean-Marier Monier, Giaûi tích 1 , NXB Giaùo duïc. [2] Y.Y. Liasko, A.C. Boâiatruc, IA. G. Gai, G.P. Goâloâvac, Giaûi tích toaùn hoïc - Caùc ví duï vaø caùc baøi toaùn, Taäp I vaø Phaàn I (Taäp II), NXB Ñaïi hoïc vaø trung hoïc chuyeân nghieäp. Ngoaøi ra, sinh vieân neân tìm hieåu vaø söû duïng moät soá phaàn meàm maùy tính hoã trôï cho vieäc hoïc vaø laøm toaùn nhö Maple, Mathematica,... Chuùc caùc baïn thaønh coâng! Giaûi tích 1 Taï Leâ Lôïi Muïc luïc Chöông I. Soá thöïc - Daõy soá 1. Soá thöïc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2. Daõy soá . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3. Caùc ñònh lyù cô baûn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 4. Caùc ví duï . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Chöông II. Giôùi haïn vaø tính lieân tuïc 1. Haøm soá . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2. Giôù haïn cuûa haøm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3. Haøm soá lieân tuïc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Chöông III. Pheùp tính vi phaân 1. Ñaïo haøm - Vi phaân . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2. Caùc ñònh lyù cô baûn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3. Ñaïo haøm caáp cao - Coâng thöùc Taylor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4. Moät soá öùng duïng . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Chöông IV. Pheùp tính tích phaân 1. Nguyeân haøm - Tích phaân baát ñònh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 2. Tích phaân xaùc ñònh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3. Moät soá öùng duïng . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 4. ...
Tìm kiếm theo từ khóa liên quan:
Giáo trình giải tích toán cao cấp toán giải tích hàm nhiều biến giáo trình toán họcTài liệu có liên quan:
-
Giáo trình Giải tích Toán học: Tập 1 (Phần 1) - GS. Vũ Tuấn
107 trang 429 0 0 -
Hướng dẫn giải bài tập Đại số tuyến tính: Phần 1
106 trang 262 0 0 -
Hình thành hệ thống điều khiển trình tự xử lý các toán tử trong một biểu thức logic
50 trang 203 0 0 -
Bài tập Giải tích (Giáo trình Toán - Tập 1): Phần 1
87 trang 172 0 0 -
Giáo trình Giải tích Toán học: Tập 1 (Phần 2) - GS. Vũ Tuấn
142 trang 144 0 0 -
Đề cương chi tiết học phần: Toán giải tích - ĐH Kinh tế-Kỹ thuật Công nghiệp
8 trang 140 0 0 -
Giải tích (Tập 1): Giáo trình lí thuyết và bài tập có hướng dẫn - Nguyễn Xuân Liêm
468 trang 106 0 0 -
4 trang 104 0 0
-
Giáo trình Toán học cao cấp (tập 2) - NXB Giáo dục
213 trang 98 0 0 -
Bài giảng Toán cao cấp - Chương 1: Các khái niệm cơ bản của lý thuyết xác suất
16 trang 88 0 0