Danh mục tài liệu

Bài Giảng Hóa Đại Cương 1 - Chương 9&10

Số trang: 13      Loại file: pdf      Dung lượng: 285.26 KB      Lượt xem: 39      Lượt tải: 0    
Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

THUYẾT ORBITAL PHÂN TỬ. Thuyết này do Hund và Muliken đưa ra vào năm 30 của thế kỷ 20 - gọi tắt là MO (Molecular Orbital) 9.1.LUẬN ĐIỂM CƠ BẢN CỦA THUYẾT MO Theo phương pháp này, các ông xem phân tử như là một khối thống nhất được tạo nên từ các tâm (các nhân nguyên tử ) và các electron. Lúc ấy trong phân tử không còn cá tính của nguyên tử mà tất cả các electron và các nhân cũng đều thuộc về phân tử. Các electron di chuyển xung quanh các hạt nhân (khác về cơ...
Nội dung trích xuất từ tài liệu:
Bài Giảng Hóa Đại Cương 1 - Chương 9&10 Chương 9 THUYẾT MO CHƯƠNG 9 THUYẾT ORBITAL PHÂN TỬ Thuyết này do Hund và Muliken đưa ra vào năm 30 của thế kỷ 20 - gọi tắt là MO (Molecular Orbital) 9.1.LUẬN ĐIỂM CƠ BẢN CỦA THUYẾT MO Theo phương pháp này, các ông xem phân tử như là một khối thống nhất được tạo nên từ các tâm (các nhân nguyên tử ) và các electron. Lúc ấy trong phân tử không còn cá tính của nguyên tử mà tất cả các electron và các nhân cũng đều thuộc về phân tử. Các electron di chuyển xung quanh các hạt nhân (khác về cơ bản với VB), xem phân tử như là một nguyên tử có nhiều tâm. Như vậy những tính chất của phân tử là tính chất của nguyên tử có nhiều tâm (thay vì một tâm) nên nó kế thừa và áp dụng tất cả những thành quả của nguyên tử. Như vậy : 1. Trong phân tử, trạng thái của mỗi electron được mô tả bởi hàm sóng ψ - gọi là Orbital phân tử (MO). Suy ra ∫ψ 2 dV cũng biểu diễn xác suất tìm thấy electron trong thể tích dV của phân tử. 2. Mỗi ψ phân tử cũng được xác định bằng bộ số lượng tử. 3. Mỗi MO cũng có một giá trị năng lượng xác định. 4. Việc phân bố các electron vào phân tử cũng tuân theo các nguyên lý, qui tắc mà các nguyên tử đã áp dụng : a. Nguyên lý ngoại trừ Pauli : mỗi MO cũng chứa tối đa 2 electron với spin ngược chiều (đối song). b. Nguyên lý vững bền : Các electron cũng vào những MO theo thứ tự năng lượng từ thấp lên cao. c. Quy tắc Hund : Khi các electron vào những MO có cùng năng lượng thì cũng sắp xếp thế nào để tổng spin cực đại. 5. Hàm sóng ψ của phân tử sẽ là tích của các hàm sóng của các electron. ψ phân tử = ψ 1 . ψ 2 ... ψ n Trong đó : ψ phân tử là MO của tất cả các electron trong phân tử đó ψ 1 là MO của electron 1 (e1) thuộc phân tử đó ψ 2 là MO của electron 2 (e2) thuộc phân tử đó ... ... ψ n là MO của electron n (en) thuộc phân tử đó Như vậy vấn đề là phải tìm các hàm ψ 1, ψ 2 ... ψ n. Cách tìm có nhiều phương pháp, nhưng phương pháp thường được dùng nhiều nhất là phương pháp tổ hợp tuyến tính các Orbital nguyên tử thành Orbital phân tử - Gọi tắt là LCAO - MO (Linear Combination of Atomic Orbital - Molecular Orbital ). 9.2.THUYẾT LCAO - MO : Việc giải chính xác phương trình sóng Schrodinger cho phân tử là điều không thể được, do đó phải dựa trên phương pháp gần đúng - như thuyết VB chúng ta đã nghiên cứu cũng là phương pháp gần đúng. Phương pháp LCAO - MO cũng là phương pháp gần đúng nhưng theo một cách khác. 9.2.1.Nguyên tắc của LCAO - MO : HOÁ ĐẠI CƯƠNG 1 68 Chương 9 THUYẾT MO Trong phân tử, khi electron di chuyển gần một hạt nhân nguyên tử nào đó thì tương tác giữa electron này và các hạt nhân khác được coi như không đáng kể, trường lực tác dụng lên electron đó được coi là trường lực của nguyên tử tương ứng và khi đó một cách gần đúng có thể coi MO của electron đó chính là AO của electron đó của nguyên tử trên. Từ đó ψ MO của 1 electron đó sẽ là tổ hợp tuyến tính của ψ AO và như vậy cứ n AO tổ hợp với nhau để tạo thành n MO. 9.2.2.Khảo sát phân tử H + : 2 a. Hàm sóng : o Đây là một ion có thật, nó có độ dài liên kết d = 1,06 A và e1 năng lượng E = -2,99 eV - cũng chính ion này là hạn chế của thuyết VB - là thuyết cặp không thể chứng minh được rằng có H 1 electron là đủ hình thành nên 1 liên kết. b Theo MO ψ phân tử = ψ 1 . ψ 2 ... ψ n Nhưng vì ion phân tử này chỉ có 1 electron nên ψ phân tử = ψ 1. Vậy vấn đề bây giờ là tìm ψ 1 - là orbital phân tử (MO) của e1 này. Như phần nguyên tắc đã trình bày ở trên, khi electron duy nhất này lúc gần nhân Ha, 1 e −ra electron lúc ấy sẽ xử sự như đang nằm trong AO của Ha, lúc ấy ψ 1 = ψ 1sa = π −r 1 Tương tự như vậy khi electron gần nhân Hb hơn thì lúc ấy : ψ 1 = ψ 1sb = eb π (Với ra, rb lần lượt là khoảng cách từ electron đó đến nhân Ha, Hb) Do đó theo nguyên lý chồng chất các trạng thái thì : ψ ...

Tài liệu được xem nhiều:

Tài liệu có liên quan: