Bài giảng Vi tích phân hàm số một biến: Chương 4 - Vũ Đỗ Huy Cường
Số trang: 37
Loại file: pdf
Dung lượng: 455.73 KB
Lượt xem: 17
Lượt tải: 0
Xem trước 4 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Bài giảng Vi tích phân hàm số một biến - Chương 4: Tích phân và các ứng dụng, cung cấp những kiến thức như Nguyên hàm của hàm số; tích phân xác định; phương pháp tích phân từng phần; tích phân suy rộng; ứng dụng của tích phân. Mời các bạn cùng tham khảo!
Nội dung trích xuất từ tài liệu:
Bài giảng Vi tích phân hàm số một biến: Chương 4 - Vũ Đỗ Huy CườngGiảng viên Vũ Đỗ Huy Cường Chương 4 Tích phân và các ứng dụng Giảng viên Vũ Đỗ Huy Cường Giải tích 1: Hàm số một biến 82 / 148Giảng viên Vũ Đỗ Huy Cường 4.1. Nguyên hàm của hàm số 4.1.1. Nguyên hàm và tích phân bất định Tập hợp tất cả nguyên hàm của hàm số f được gọi là tích phân bất định của f theo biến x, và được kí hiệu bởi f (x)dx. (24) Các quy tắc của tích phân bất định: (i). f (x)dx = f (x). (ii). d f (x)dx = f (x). (iii). df = f (x) + c. (iv). cf (x)dx = c f (x)dx. (v). f1 (x) ± f2 (x) dx = f1 (x)dx ± f2 (x)dx. Giảng viên Vũ Đỗ Huy Cường Giải tích 1: Hàm số một biến 83 / 148Giảng viên Vũ Đỗ Huy Cường 4.1.1. Nguyên hàm và tích phân bất định x n+1 1 (i). x n dx = + C. (ii). dx = ln |x| + C. n+1 x dx 1 x dx 1 |a + x| (iii). = arctan . (iv). = ln + C. a2 + x 2 a a a2 − x 2 2a |a − x| dx x dx (v). √ = arcsin + C. (vi). √ = ln |x + x 2 ± a2 | + C. a2 − x 2 a x 2 ± a2 Tích phân bất định của một số hàm cơ bản (vii). u sin udx = − cos u + C. (viii). u cos udx = sin u + C. (ix). u tan udx = − ln | cos u| + C. (x). u cot udx = ln | sin u| + C. 1 x 1 x π (xi). dx = ln | tan | + C. (xii). dx = ln | tan + |+C sin x 2 cos x 2 4 au (xiii). u eu dx = eu + C. (xiv). u au dx = + C. ln a x(ln x − 1) (xv). ln xdx = x(ln x − 1) + C. (xvi). loga xdx = + C. ln a Giảng viên Vũ Đỗ Huy Cường Giải tích 1: Hàm số một biến 84 / 148Giảng viên Vũ Đỗ Huy Cường 4.1.1. Nguyên hàm và tích phân bất định Bài tập: Tìm các tích phân bất định sau √ 2 (1 + x)2 1) (x + 1) dx. 2) √3 dx. x x2 x 4 − 2x 2 + 10 3) dx. 4) dx. x2 +4 5 − x2 √ √ 1 x2 − 4 − x2 + 4 5) (ln x + − ex )dx. 6) √ dx. x x 4 − 16 (sin x + cos x)2 √ 1 7) dx. 8) ( cos x + √ )2 dx. sin x cos x Giảng viên Vũ Đỗ Huy Cường Giải tích 1: Hàm số một biến 85 / 148Giảng viên Vũ Đỗ Huy Cường 4.1.2. Phương pháp thế Nếu u = g(x) là hàm khả vi mà tập giá trị của nó là tập I và f liên tục trên I thì f (g(x))g (x)dx = f (u)du. (25) 2x + 1 Ví dụ: Tìm dx. x2 +x −3 Đặt u = x 2 + x − 3 thì du = (2x + 1)dx. Chúng ta thu được 2x + 1 du dx = x2 +x −3 u = ln |u| + C = ln |x 2 + x − 3| + C. Giảng viên Vũ Đỗ Huy Cường Giải tích 1: Hàm số một biến 86 / 148Giảng viên Vũ Đỗ Huy Cường 4.1.2. Phương pháp thế Nếu tồn tại x = ϕ(t) sao cho f (x)dx = f (ϕ(t))ϕ ...
Nội dung trích xuất từ tài liệu:
Bài giảng Vi tích phân hàm số một biến: Chương 4 - Vũ Đỗ Huy CườngGiảng viên Vũ Đỗ Huy Cường Chương 4 Tích phân và các ứng dụng Giảng viên Vũ Đỗ Huy Cường Giải tích 1: Hàm số một biến 82 / 148Giảng viên Vũ Đỗ Huy Cường 4.1. Nguyên hàm của hàm số 4.1.1. Nguyên hàm và tích phân bất định Tập hợp tất cả nguyên hàm của hàm số f được gọi là tích phân bất định của f theo biến x, và được kí hiệu bởi f (x)dx. (24) Các quy tắc của tích phân bất định: (i). f (x)dx = f (x). (ii). d f (x)dx = f (x). (iii). df = f (x) + c. (iv). cf (x)dx = c f (x)dx. (v). f1 (x) ± f2 (x) dx = f1 (x)dx ± f2 (x)dx. Giảng viên Vũ Đỗ Huy Cường Giải tích 1: Hàm số một biến 83 / 148Giảng viên Vũ Đỗ Huy Cường 4.1.1. Nguyên hàm và tích phân bất định x n+1 1 (i). x n dx = + C. (ii). dx = ln |x| + C. n+1 x dx 1 x dx 1 |a + x| (iii). = arctan . (iv). = ln + C. a2 + x 2 a a a2 − x 2 2a |a − x| dx x dx (v). √ = arcsin + C. (vi). √ = ln |x + x 2 ± a2 | + C. a2 − x 2 a x 2 ± a2 Tích phân bất định của một số hàm cơ bản (vii). u sin udx = − cos u + C. (viii). u cos udx = sin u + C. (ix). u tan udx = − ln | cos u| + C. (x). u cot udx = ln | sin u| + C. 1 x 1 x π (xi). dx = ln | tan | + C. (xii). dx = ln | tan + |+C sin x 2 cos x 2 4 au (xiii). u eu dx = eu + C. (xiv). u au dx = + C. ln a x(ln x − 1) (xv). ln xdx = x(ln x − 1) + C. (xvi). loga xdx = + C. ln a Giảng viên Vũ Đỗ Huy Cường Giải tích 1: Hàm số một biến 84 / 148Giảng viên Vũ Đỗ Huy Cường 4.1.1. Nguyên hàm và tích phân bất định Bài tập: Tìm các tích phân bất định sau √ 2 (1 + x)2 1) (x + 1) dx. 2) √3 dx. x x2 x 4 − 2x 2 + 10 3) dx. 4) dx. x2 +4 5 − x2 √ √ 1 x2 − 4 − x2 + 4 5) (ln x + − ex )dx. 6) √ dx. x x 4 − 16 (sin x + cos x)2 √ 1 7) dx. 8) ( cos x + √ )2 dx. sin x cos x Giảng viên Vũ Đỗ Huy Cường Giải tích 1: Hàm số một biến 85 / 148Giảng viên Vũ Đỗ Huy Cường 4.1.2. Phương pháp thế Nếu u = g(x) là hàm khả vi mà tập giá trị của nó là tập I và f liên tục trên I thì f (g(x))g (x)dx = f (u)du. (25) 2x + 1 Ví dụ: Tìm dx. x2 +x −3 Đặt u = x 2 + x − 3 thì du = (2x + 1)dx. Chúng ta thu được 2x + 1 du dx = x2 +x −3 u = ln |u| + C = ln |x 2 + x − 3| + C. Giảng viên Vũ Đỗ Huy Cường Giải tích 1: Hàm số một biến 86 / 148Giảng viên Vũ Đỗ Huy Cường 4.1.2. Phương pháp thế Nếu tồn tại x = ϕ(t) sao cho f (x)dx = f (ϕ(t))ϕ ...
Tìm kiếm theo từ khóa liên quan:
Bài giảng Vi tích phân hàm số một biến Vi tích phân hàm số một biến Vi tích phân Tích phân bất định Tích phân suy rộng Quy tắc tính tích phân xác địnhTài liệu có liên quan:
-
Giáo trình Giải tích I: Phần 1 - Trần Bình
161 trang 71 0 0 -
Giáo trình Toán cao cấp A1: Phần 2 - ĐH Sư phạm Kỹ thuật TPHCM
139 trang 53 0 0 -
Giáo trình Giải tích 1 - Lê Chí Ngọc
139 trang 51 0 0 -
Giáo trình Toán kinh tế: Phần 2 - Trường ĐH Kinh doanh và Công nghệ Hà Nội (năm 2022)
43 trang 47 0 0 -
Bài giảng Toán cao cấp - Vũ Khắc Bảy
136 trang 43 0 0 -
Giáo trình Toán cao cấp A1: Phần 2
61 trang 43 0 0 -
Bài giảng Giải tích cao cấp: Chương 4 - Lê Thái Duy
112 trang 41 0 0 -
Bài giảng Toán cao cấp 2 (Phần Giải tích): Bài 2 - Nguyễn Phương
54 trang 41 0 0 -
Bài giảng Toán cao cấp 1 - Trường ĐH Công nghiệp Thực Phẩm
65 trang 40 0 0 -
Bài giảng Vi tích phân 1C: Chương 4 - Cao Nghi Thục
61 trang 39 0 0