Danh mục tài liệu

Bài giảng Xác suất thống kê: Không gian xác suất

Số trang: 86      Loại file: pdf      Dung lượng: 1.78 MB      Lượt xem: 4      Lượt tải: 0    
Xem trước 9 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Bài giảng Xác suất thống kê: Không gian xác suất tập trung trình bày các vấn đề cơ bản về biến cố ngẫu nhiên; xác suất; xác suất điều kiện; sự độc lập ngẫu nhiên;... Hy vọng tài liệu là nguồn thông tin hữu ích cho quá trình học tập và nghiên cứu của các bạn.
Nội dung trích xuất từ tài liệu:
Bài giảng Xác suất thống kê: Không gian xác suất 1 kh«ng gian x¸c suÊt A.- BiÕn cè ngÉu nhiªn Trong v« sè c¸c hiÖn t−îng x¶y ra chung quanh, ta cã thÓ ph©n biÖt 1.- Kh¸i niÖm:thµnh hai lo¹i: a) HiÖn t−îng tÊt yÕu: lµ hiÖn t−îng mµ nÕu ®−îc thùc hiÖn trong cïng mét ®iÒu kiÖnnh− nhau th× chóng cho c¸c kÕt qu¶ gièng nhau. b) HiÖn t−îng ngÉu nhiªn: lµ hiÖn t−îng mµ dï ®−îc thùc hiÖn trong cïng mét ®iÒukiÖn chóng vÉn cho c¸c kÕt qu¶ kh¸c nhau. VÝ dô: • Gieo mét ®ång xu, kÕt qu¶ sÊp hay ng÷a lµ hiÖn t−îng ngÉu nhiªn, • Khi gieo mét con xóc s¾c, sè nèt xuÊt hiÖn ë mÆt trªn cña nã lµ mét hiÖnt−îng ngÉu nhiªn. §èi t−îng nghiªn cøu cña lý thuyÕt x¸c suÊt lµ c¸c biÕn cè ngÉu nhiªn, do vËyta cÇn trang bÞ cho chóng mét cÊu tróc to¸n häc thÝch hîp. §ã lµ ®¹i sè c¸c biÕncè ngÉu nhiªn. Ta sÏ lu«n coi r»ng c¸c biÕn cè trong mét ®¹i sè c¸c biÕn cè ®Òu cã liªn quantíi kÕt qu¶ cña mét phÐp thö nµo ®ã. ë ®©y phÐp thö ®−îc hiÓu lµ sù thùc hiÖnmét sè ®iÒu kiÖn nhÊt ®Þnh. Mçi phÐp thö g¾n víi mét tËp hîp c¸c kÕt qu¶ cã thÓ x¶y ra. víi mçi biÕn cèthuéc ®¹i sè c¸c biÕn cè ta ph¶i kh¼ng ®Þnh ®−îc r»ng: khi mét kÕt qu¶ nµo ®ã cñaphÐp thö ®−îc thùc hiÖn nã x¶y ra hay kh«ng x¶y ra. Gi¶ Sö A, B, C, ... lµ c¸c biÕn cè ngÉu nhiªn cã liªn quan tíi kÕt qu¶ cña métphÐp thö F nµo ®ã. • Ta nãi A, B lµ ®ång nhÊt, vµ viÕt A = B, nÕu víi mçi kÕt qu¶ cã thÓ cña phÐpthö chóng cïng x¶y ra hoÆc cïng kh«ng x¶y ra. • Sù kh«ng xuÊt hiÖn cña A ®−îc xem lµ sù xuÊt hiÖn cña biÕn cè ®èi A, kýhiÖu Ac , hay A. • Sù xuÊt hiÖn ®ång thêi hai biÕn cè A, B ®−îc coi lµ sù xuÊt hiÖn cña biÕn cègiao A giao B, ký hiÖu A ∩ B hay A.B. • Sù kh«ng thÓ xuÊt hiÖn ®−îc coi lµ mét biÕn cè, gäi lµ biÕn cè kh«ng thÓ cãhay kh«ng, ký hiÖu lµ ∅ hay V . • A, B gäi lµ xung kh¾c nÕu AB = ∅. • Sù xuÊt hiÖn Ýt nhÊt mét trong hai biÕn cè A, B ®−îc coi lµ sù xuÊt hiÖn cñabiÕn cè hîp A hîp B, ký hiÖu A ∪ B. Khi A.B = ∅ ta viÕt A + B thay A ∪ B . • Sù ch¾c ch¾n xuÊt hiÖn ®−îc coi lµ mét biÕn cè, gäi lµ biÕn cè ch¾c ch¾n, kýhiÖu Ω. This lesson was typed by pdfLATEX2 • Ta ®Þnh nghÜa A \ B = A.B c . • NÕu sù xuÊt hiÖn cña A kÐo theo sù xuÊt hiÖn cña B th× ta nãi A kÐo theo B,ký hiÖu A ⊂ B. • Ta nãi hä biÕn cè {B1 , B2 , ..., Bn } lµ ®Çy ®ñ nÕu chóng tõng ®«i mét xung Pnkh¾c vµ Bi = Ω. i=1 2.- Mét sè tÝnh chÊt: 1. NÕu A = B th× B = A; A.A = A 2. (Ac )c = A; A.Ac = ∅ 3. A.B = B.A; (A.B).C = A(B.C) 4. A ∪ B = B ∪ A; (A ∪ B) ∪ C = A ∪ (B ∪ C) 5. A + Ac = Ω, do ®ã Ac = Ω \ A 6. A = B ⇐⇒ A ⊂ B vµ B ⊂ A 7. A ⊂ B ⇐⇒ B c ⊂ Ac 8. A ∪ (B.C) = (A ∪ B).(A ∪ C) 9. A.(B ∪ C) = A.B ∪ A.C 10. (A.B)c = Ac ∪ B c ; (A ∪ B)c = Ac .B c 11. A ∪ B = A + B.Ac ... ViÖc chøng minh c¸c tÝnh chÊt trªn ®¬n gi¶n, chØ cÇn ¸p dông ®Þnh nghÜa vµ c¸cqui t¾c l«gic. Chó ý: Tõ c¸c tÝnh chÊt 3. 4. suy ra c¸c phÐp to¸n lÊy giao, hîp cã thÓ më réngcho hä h÷u h¹n c¸c biÕn cè ngÉu nhiªn. C¸c hÖ thøc trong 10. cã thÓ më réngthµnh: n !c n n !c n \ [ [ \ c Ai = Ai ; A i = Ai c i=1 i=1 i=1 i=1 VÝ dô: XÐt phÐp thö F: gieo ®ång thêi hai xóc s¾c ®Òu, ®ång chÊt. Gäi A, B, C, D, Elµ c¸c biÕn cè ngÉu nhiªn liªn quan ®−îc x¸c ®Þnh nh− sau: A: Tæng sè nèt xuÊt hiÖn trªn hai xóc s¾c lµ sè ch½n B: Tæng sè nèt xuÊt hiÖn trªn hai xóc s¾c lµ sè lÎ C: Sè nèt xuÊt hiÖn trªn mçi xóc s¾c lµ sè lÎ D: Sè nèt xuÊt hiÖn trªn mçi xóc s¾c lµ sè ch½n E: Sè nèt xuÊt hiÖn trªn hai xóc s¾c cïng lÎ hoÆc cïng ch½n. Khi ®ã ta cã c¸c hÖ thøc (dÔ dµng kiÓm tra ®−îc): A = E; Ac = B; A.B =∅; A = C + D; D ⊂ A; ... 3.- §Þnh nghÜa ®¹i sè vµ σ ®¹i sè: This lesson was typed by pdfLATEX 3 TËp A c¸c phÇn tö tïy ý A, B, C, ... ®−îc gäi lµ mét ®¹i sè Boole hay méttr−êng khi c¸c ®iÒu kiÖn sau ®−îc thùc hiÖn: 1. Ω ∈A. 2. A ∈ A =⇒ Ac ∈ A. n S 3. Ak ∈ A =⇒ Ak ∈ A. k=1 NhËn xÐt: Trong ®¹i sè, c¸c phÐp to¸n lÊy giao (tÝch), hîp thùc hiÖn ®−îc víi métsè h÷u h¹n phÇn tö. • §¹i sè Boole ®−îc gäi lµ σ ®¹i sè (σ tr−êng) nÕu nã ®ãng kÝn víi phÐp lÊyhîp ®Õm ®−îc hay víi phÐp giao ®Õm ®−îc. • Gi¶ sö C lµ mét ®¹i sè, σ ®¹i sè nhá nhÊt chøa C ®−îc gäi lµ σ ®¹i sè sinhbëi C, ký hiÖu σ(C). VÝ dô: 1) TËp hîp c¸c kÕt qu¶ cã thÓ cã liªn quan tíi mét phÐp thö víi c¸ch x¸c ®ÞnhbiÕn cè ®èi, giao c¸c biÕn cè, hîp c¸c biÕn cè, biÕn cè kh«ng thÓ cã, biÕn cè ch¾cch¾n nh− trªn, lËp nªn mét ®¹i sè Boole (dÔ dµng kiÓm tra). Nã ®−îc gäi lµ ®¹i sèc¸c biÕn cè. 2) Gi¶ sö Ω lµ tËp kh¸c rçng, ký hiÖu C(Ω) lµ líp mäi tËp con cña Ω. Víi c¸cphÐp to¸n tËp hîp ®· biÕt (lÊy giao, hîp, phÇn bï) cïng víi tËp rçng, C(Ω) lËp nªnmét ®¹i sè Boole. 3) Gi¶ sö A ⊂ Ω, Ω 6= ∅. XÐt líp CA = {∅, Ω, A, Ac } víi c¸c phÐp to¸n tËp hîpth«ng th−êng CA t¹o nªn mét σ- ®¹i sè. 4.- Liªn hÖ gi÷a ®¹i sè c¸c biÕn cè vµ ®¹i sè c¸c tËp hîp: Mèi liªn hÖ nÇy ®−îc thÓ hiÖn qua ®Þnh lý Stone d−íi ®©y: §Þnh lý: Mçi ®¹i sè c¸c biÕn cè cã mét ®¹i sè c¸c tËp hîp ®¼ng cÊu víi nã. • Mét biÕn cè A ®−îc gäi lµ phøc hîp nÕu nã cã thÓ biÓu diÔn d−íi d¹ng hîphai biÕn cè kh«ng ®ång nhÊt víi nã. • Mét biÕn cè A kh«ng ph¶i lµ phøc hîp ®−îc gäi lµ biÕn cè s¬ cÊp. Tõ c¸c kÕt qu¶ trªn ta suy ra: mét biÕn cè phøc hîp cã thÓ xuÊt hiÖn theo nhiÒuc¸ch kh¸ ...