Bài tập Toán: Khảo sát hàm số
Số trang: 85
Loại file: pdf
Dung lượng: 2.00 MB
Lượt xem: 9
Lượt tải: 0
Xem trước 9 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Gỉa sử hàm số y = f(x) có tập xác định D. Hàm số f đồng biến trên D y = 0, với mọi x thuộc D và y = 0 nó chỉ xảy ra tại một số hữu hạn điểm thuộc D . hàm số f nghịch biến trên D y = 0 , với mọi x thuộc D và y = 0 nó chỉ xảy ra tại một số hữu hạn điểm thuộc D
Nội dung trích xuất từ tài liệu:
Bài tập Toán: Khảo sát hàm số www.MATHVN.com - Toán Học Việt Nam TRẦN SĨ TÙNG ---- ›š & ›š ----TÀI LIỆU ÔN THI ĐẠI HỌC – CAO ĐẲNG Năm 2012 www.MATHVN.comTrần Sĩ Tùng Khảo sát hàm số www.MATHVN.com - Toán Học Việt Nam KSHS 01: TÍNH ĐƠN ĐIỆU CỦA HÀM SỐA. Kiến thức cơ bản Giả sử hàm số y = f ( x ) có tập xác định D. · Hàm số f đồng biến trên D Û y¢ ³ 0, x Î D và y¢ = 0 chỉ xảy ra tại một số hữu hạn điểm thuộc D. · Hàm số f nghịch biến trên D Û y¢ £ 0, x Î D và y¢ = 0 chỉ xảy ra tại một số hữu hạn điểm thuộc D. · Nếu y = ax 2 + bx + c (a ¹ 0) thì: + y ³ 0, x Î R Û í a > 0 + y £ 0, x Î R Û í a < 0 ì ì îD £ 0 îD £ 0 · Định lí về dấu của tam thức bậc hai g( x ) = ax 2 + bx + c (a ¹ 0) : + Nếu D < 0 thì g( x ) luôn cùng dấu với a. b + Nếu D = 0 thì g( x ) luôn cùng dấu với a (trừ x = - ) 2a + Nếu D > 0 thì g( x ) có hai nghiệm x1, x2 và trong khoảng hai nghiệm thì g( x ) khác dấu với a, ngoài khoảng hai nghiệm thì g( x ) cùng dấu với a. · So sánh các nghiệm x1, x2 của tam thức bậc hai g( x ) = ax 2 + bx + c với số 0: ìD ³ 0 ìD ³ 0 ï ï + x1 £ x2 < 0 Û í P > 0 + 0 < x1 £ x2 Û í P > 0 + x1 < 0 < x2 Û P < 0 ïS < 0 ïS > 0 î î · g( x ) £ m, x Î (a; b) Û max g( x ) £ m ; g( x ) ³ m, x Î (a; b) Û min g( x ) ³ m ( a;b ) ( a;b )B. Một số dạng câu hỏi thường gặp 1. Tìm điều kiện để hàm số y = f ( x ) đơn điệu trên tập xác định (hoặc trên từng khoảng xác định). · Hàm số f đồng biến trên D Û y¢ ³ 0, x Î D và y¢ = 0 chỉ xảy ra tại một số hữu hạn điểm thuộc D. · Hàm số f nghịch biến trên D Û y¢ £ 0, x Î D và y¢ = 0 chỉ xảy ra tại một số hữu hạn điểm thuộc D. · Nếu y = ax 2 + bx + c (a ¹ 0) thì: + y ³ 0, x Î R Û í a > 0 + y £ 0, x Î R Û í a < 0 ì ì îD £ 0 îD £ 0 2. Tìm điều kiện để hàm số y = f ( x ) = ax 3 + bx 2 + cx + d đơn điệu trên khoảng (a ; b ) . Ta có: y¢ = f ¢( x ) = 3ax 2 + 2bx + c . a) Hàm số f đồng biến trên (a ; b ) Û y¢ ³ 0, x Î (a ; b ) và y¢ = 0 chỉ xảy ra tại một số hữu hạn điểm thuộc (a ; b ) . Trường hợp 1: · Nếu bất phương trình f ¢( x ) ³ 0 Û h(m) ³ g( x ) (*) thì f đồng biến trên (a ; b ) Û h(m) ³ max g( x ) (a ; b ) Trang 1 www.MATHVN.comKhảo sát hàm số Trần Sĩ Tùng www.MATHVN.com - Toán Học Việt Nam · Nếu bất phương trình f ¢( x ) ³ 0 Û h(m) £ g( x ) (**) thì f đồng biến trên (a ; b ) Û h(m) £ min g( x ) (a ; b ) Trường hợp 2: Nếu bất phương trình f ¢( x ) ³ 0 không đưa được về dạng (*) thì đặt t = x - a . Khi đó ta có: y¢ = g(t ) = 3at 2 + 2(3aa + b)t + 3aa 2 + 2ba + c . ìa > 0 ïD > 0 ìa > 0 ï – Hàm số f đồng biến trên khoảng (-¥; a) Û g(t ) ³ 0, t < 0 Û í Úí îD £ 0 ïS > 0 ïP ³ 0 î ìa > 0 ïD > 0 ìa > 0 ï – Hàm số f đồng biến trên khoảng (a; +¥) Û g(t ) ³ 0, t > 0 Û í Úí ...
Nội dung trích xuất từ tài liệu:
Bài tập Toán: Khảo sát hàm số www.MATHVN.com - Toán Học Việt Nam TRẦN SĨ TÙNG ---- ›š & ›š ----TÀI LIỆU ÔN THI ĐẠI HỌC – CAO ĐẲNG Năm 2012 www.MATHVN.comTrần Sĩ Tùng Khảo sát hàm số www.MATHVN.com - Toán Học Việt Nam KSHS 01: TÍNH ĐƠN ĐIỆU CỦA HÀM SỐA. Kiến thức cơ bản Giả sử hàm số y = f ( x ) có tập xác định D. · Hàm số f đồng biến trên D Û y¢ ³ 0, x Î D và y¢ = 0 chỉ xảy ra tại một số hữu hạn điểm thuộc D. · Hàm số f nghịch biến trên D Û y¢ £ 0, x Î D và y¢ = 0 chỉ xảy ra tại một số hữu hạn điểm thuộc D. · Nếu y = ax 2 + bx + c (a ¹ 0) thì: + y ³ 0, x Î R Û í a > 0 + y £ 0, x Î R Û í a < 0 ì ì îD £ 0 îD £ 0 · Định lí về dấu của tam thức bậc hai g( x ) = ax 2 + bx + c (a ¹ 0) : + Nếu D < 0 thì g( x ) luôn cùng dấu với a. b + Nếu D = 0 thì g( x ) luôn cùng dấu với a (trừ x = - ) 2a + Nếu D > 0 thì g( x ) có hai nghiệm x1, x2 và trong khoảng hai nghiệm thì g( x ) khác dấu với a, ngoài khoảng hai nghiệm thì g( x ) cùng dấu với a. · So sánh các nghiệm x1, x2 của tam thức bậc hai g( x ) = ax 2 + bx + c với số 0: ìD ³ 0 ìD ³ 0 ï ï + x1 £ x2 < 0 Û í P > 0 + 0 < x1 £ x2 Û í P > 0 + x1 < 0 < x2 Û P < 0 ïS < 0 ïS > 0 î î · g( x ) £ m, x Î (a; b) Û max g( x ) £ m ; g( x ) ³ m, x Î (a; b) Û min g( x ) ³ m ( a;b ) ( a;b )B. Một số dạng câu hỏi thường gặp 1. Tìm điều kiện để hàm số y = f ( x ) đơn điệu trên tập xác định (hoặc trên từng khoảng xác định). · Hàm số f đồng biến trên D Û y¢ ³ 0, x Î D và y¢ = 0 chỉ xảy ra tại một số hữu hạn điểm thuộc D. · Hàm số f nghịch biến trên D Û y¢ £ 0, x Î D và y¢ = 0 chỉ xảy ra tại một số hữu hạn điểm thuộc D. · Nếu y = ax 2 + bx + c (a ¹ 0) thì: + y ³ 0, x Î R Û í a > 0 + y £ 0, x Î R Û í a < 0 ì ì îD £ 0 îD £ 0 2. Tìm điều kiện để hàm số y = f ( x ) = ax 3 + bx 2 + cx + d đơn điệu trên khoảng (a ; b ) . Ta có: y¢ = f ¢( x ) = 3ax 2 + 2bx + c . a) Hàm số f đồng biến trên (a ; b ) Û y¢ ³ 0, x Î (a ; b ) và y¢ = 0 chỉ xảy ra tại một số hữu hạn điểm thuộc (a ; b ) . Trường hợp 1: · Nếu bất phương trình f ¢( x ) ³ 0 Û h(m) ³ g( x ) (*) thì f đồng biến trên (a ; b ) Û h(m) ³ max g( x ) (a ; b ) Trang 1 www.MATHVN.comKhảo sát hàm số Trần Sĩ Tùng www.MATHVN.com - Toán Học Việt Nam · Nếu bất phương trình f ¢( x ) ³ 0 Û h(m) £ g( x ) (**) thì f đồng biến trên (a ; b ) Û h(m) £ min g( x ) (a ; b ) Trường hợp 2: Nếu bất phương trình f ¢( x ) ³ 0 không đưa được về dạng (*) thì đặt t = x - a . Khi đó ta có: y¢ = g(t ) = 3at 2 + 2(3aa + b)t + 3aa 2 + 2ba + c . ìa > 0 ïD > 0 ìa > 0 ï – Hàm số f đồng biến trên khoảng (-¥; a) Û g(t ) ³ 0, t < 0 Û í Úí îD £ 0 ïS > 0 ïP ³ 0 î ìa > 0 ïD > 0 ìa > 0 ï – Hàm số f đồng biến trên khoảng (a; +¥) Û g(t ) ³ 0, t > 0 Û í Úí ...
Tìm kiếm theo từ khóa liên quan:
Bài tập khảo sát hàm số tài liệu hàm số tài liệu ôn thi đại học bất phương trình khảo sát hàm số tài liệu khảo sát hàm sốTài liệu có liên quan:
-
133 trang 73 0 0
-
Đề thi môn Toán cao cấp (Dành cho hệ Văn bằng 2) - ĐH Kinh tế TP. HCM
1 trang 54 0 0 -
chinh phục điểm câu hỏi phụ khảo sát hàm số từ a đến z: phần 1 - nxb Đại học quốc gia hà nội
162 trang 52 0 0 -
Ôn thi THPT Quốc gia môn Toán (Tập 3)
335 trang 50 0 0 -
43 trang 42 0 0
-
Lời giải và hướng dẫn bài tập đại số sơ cấp - Chương 4
54 trang 42 0 0 -
chinh phục điểm câu hỏi phụ khảo sát hàm số từ a đến z: phần 2 - nxb Đại học quốc gia hà nội
248 trang 40 0 0 -
Giáo án Đại số lớp 10: Bất phương trình và hệ bất phương trình bậc nhất một ẩn
11 trang 39 0 0 -
3 Đề thi thử ĐH môn Toán - Sở GD&ĐT Bắc Ninh năm 2014 khối A, B, D
17 trang 39 0 0 -
8 trang 39 0 0