Báo cáo toán học: Weakly d-Koszul Modules
Số trang: 11
Loại file: pdf
Dung lượng: 138.27 KB
Lượt xem: 11
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
A là một đại số d-Koszul và M ∈ gr (A), chúng tôi cho thấy rằng M là một yếu mô-đun khi và chỉ khi E (G (M)) = ⊕ n ≥ 0 Ext n (G (M), A0)tạo ra ở mức độ 0 E phân loại một (A) mô-đun-. Hơn nữa, mối quan hệ giữa các module yếu d-Koszul Koszul d-mô-đun và các mô-đun Koszul được thảo luận.
Nội dung trích xuất từ tài liệu:
Báo cáo toán học: " Weakly d-Koszul Modules " Vietnam Journal of Mathematics 34:3 (2006) 341–351 9LHWQD P-RXUQDO RI 0$7+(0$7, &6 9$ 67 Weakly d-Koszul Modules Jia-Feng Lu and Guo-Jun Wang Department of Mathematics, Zhejiang University, Hangzhou 310027, China Received January 12, 2006 Revised March 27, 2006Abstract. Let A be a d-Koszul algebra and M ∈gr (A), we show that M is a weakly module if and only if E (G(M ))=⊕n≥0 Ext n (G(M ),A0 ) is generated in degree 0 asd-Koszul Aa graded E (A)-module. Moreover, relations among weakly d-Koszul modules, d-Koszulmodules and Koszul modules are discussed. We also show that the Koszul dual of aweakly d-Koszul module M : E (M )=⊕n≥0 Ext n (M,A0 ) is finitely generated as a graded AE (A)-module.2000 Mathematics Subject Classification: 16E40, 16E45, 16S37, 16W50.Keywords: d-Koszul algebras, d-Koszul modules, weakly d-Koszul modules.1. IntroductionThis paper is a continuation work of [9]. The concept of weakly d-Koszul module,which is a generalizaion of d-Koszul module, is firstly introduced in [9]. Thisclass of modules resemble classical d-Koszul modules in the way that they admitsa tower of d-Koszul modules. It is well known that both Koszul modules andd-Koszul modules are pure and they have many nice homological properties.From [9], we know that although weakly d-Koszul modules are not pure, theyhave many perfect properties similar to d-Koszul modules. Using Koszul dual to characterize Koszul modules is another effective aspect.For Koszul and d-Koszul modules, we have the following well known results from[4] and [6]. • Let A be a Koszul algebra and M ∈ grs (A). Then M is a Koszul module if and only if the Koszul dual E (M ) = ⊕n≥0Ext n (M, A0 ) is generated in A degree 0 as a graded E (A)-module.342 Jia-Feng Lu and Guo-Jun Wang • Let A be a d-Koszul algebra and M ∈ grs (A). Then M is a d-Koszul module if and only if the Koszul dual E (M ) = ⊕n≥0Ext n (M, A0 ) is generated in A degree 0 as a graded E (A)-module. It is a pity that we cannot get the similar result for weakly d-Koszul modulethough it is a generalizaion of d-Koszul module. We only have a necessarycondition for weakly d-Koszul modules (see [9]): • Let M be a weakly d-Koszul module with homogeneous generators being of degrees d0 and d1 (d0 < d1). Then E (M ) is generated in degrees 0 as a graded E (A)-module. One of the aims of this paper is to get a similar equivalent description forweakly d-Koszul modules. In order to do this, we cite the notion of the associatedgraded module of a module, denoted by G(M ), the formal definition will be givenlater. If we replace the weakly d-Koszul module M by G(M ), we can get thesimilar result: • Let A be a d-Koszul algebra and M ∈ gr(A). Then M is a weakly d-Koszul module if and only if E (G(M )) = ⊕n≥0 Ext n (G(M ), A0) is generated in A degree 0 as a graded E (A)-module. From this point of view, weakly d-Koszul modules have a close relation be-tween classical d-Koszul modules and Koszul modules. It is well known that to determine whether the Koszul dual E (M ) is finitelygenerated or not is very difficult in general. In this paper, we show that E (M )is finitely generated as a graded E (A)-module for a weakly d-Koszul module M ,which is an application of Theorem 2.5 [9] and another main result of this paper. The paper is organized as follows. In Sec. 2, we introduce so ...
Nội dung trích xuất từ tài liệu:
Báo cáo toán học: " Weakly d-Koszul Modules " Vietnam Journal of Mathematics 34:3 (2006) 341–351 9LHWQD P-RXUQDO RI 0$7+(0$7, &6 9$ 67 Weakly d-Koszul Modules Jia-Feng Lu and Guo-Jun Wang Department of Mathematics, Zhejiang University, Hangzhou 310027, China Received January 12, 2006 Revised March 27, 2006Abstract. Let A be a d-Koszul algebra and M ∈gr (A), we show that M is a weakly module if and only if E (G(M ))=⊕n≥0 Ext n (G(M ),A0 ) is generated in degree 0 asd-Koszul Aa graded E (A)-module. Moreover, relations among weakly d-Koszul modules, d-Koszulmodules and Koszul modules are discussed. We also show that the Koszul dual of aweakly d-Koszul module M : E (M )=⊕n≥0 Ext n (M,A0 ) is finitely generated as a graded AE (A)-module.2000 Mathematics Subject Classification: 16E40, 16E45, 16S37, 16W50.Keywords: d-Koszul algebras, d-Koszul modules, weakly d-Koszul modules.1. IntroductionThis paper is a continuation work of [9]. The concept of weakly d-Koszul module,which is a generalizaion of d-Koszul module, is firstly introduced in [9]. Thisclass of modules resemble classical d-Koszul modules in the way that they admitsa tower of d-Koszul modules. It is well known that both Koszul modules andd-Koszul modules are pure and they have many nice homological properties.From [9], we know that although weakly d-Koszul modules are not pure, theyhave many perfect properties similar to d-Koszul modules. Using Koszul dual to characterize Koszul modules is another effective aspect.For Koszul and d-Koszul modules, we have the following well known results from[4] and [6]. • Let A be a Koszul algebra and M ∈ grs (A). Then M is a Koszul module if and only if the Koszul dual E (M ) = ⊕n≥0Ext n (M, A0 ) is generated in A degree 0 as a graded E (A)-module.342 Jia-Feng Lu and Guo-Jun Wang • Let A be a d-Koszul algebra and M ∈ grs (A). Then M is a d-Koszul module if and only if the Koszul dual E (M ) = ⊕n≥0Ext n (M, A0 ) is generated in A degree 0 as a graded E (A)-module. It is a pity that we cannot get the similar result for weakly d-Koszul modulethough it is a generalizaion of d-Koszul module. We only have a necessarycondition for weakly d-Koszul modules (see [9]): • Let M be a weakly d-Koszul module with homogeneous generators being of degrees d0 and d1 (d0 < d1). Then E (M ) is generated in degrees 0 as a graded E (A)-module. One of the aims of this paper is to get a similar equivalent description forweakly d-Koszul modules. In order to do this, we cite the notion of the associatedgraded module of a module, denoted by G(M ), the formal definition will be givenlater. If we replace the weakly d-Koszul module M by G(M ), we can get thesimilar result: • Let A be a d-Koszul algebra and M ∈ gr(A). Then M is a weakly d-Koszul module if and only if E (G(M )) = ⊕n≥0 Ext n (G(M ), A0) is generated in A degree 0 as a graded E (A)-module. From this point of view, weakly d-Koszul modules have a close relation be-tween classical d-Koszul modules and Koszul modules. It is well known that to determine whether the Koszul dual E (M ) is finitelygenerated or not is very difficult in general. In this paper, we show that E (M )is finitely generated as a graded E (A)-module for a weakly d-Koszul module M ,which is an application of Theorem 2.5 [9] and another main result of this paper. The paper is organized as follows. In Sec. 2, we introduce so ...
Tìm kiếm theo từ khóa liên quan:
báo cáo của tạp chí Vietnam Journal of Mathematics tài liệu báo cáo nghiên cứu khoa học cách trình bày báo cáo kiến thức toán học báo cáo toán họcTài liệu có liên quan:
-
HƯỚNG DẪN THỰC TẬP VÀ VIẾT BÁO CÁO THỰC TẬP TỐT NGHIỆP
18 trang 364 0 0 -
Hướng dẫn thực tập tốt nghiệp dành cho sinh viên đại học Ngành quản trị kinh doanh
20 trang 266 0 0 -
Đồ án: Nhà máy thủy điện Vĩnh Sơn - Bình Định
54 trang 230 0 0 -
23 trang 229 0 0
-
BÁO CÁO IPM: MÔ HÌNH '1 PHẢI 5 GIẢM' - HIỆN TRẠNG VÀ KHUYNH HƯỚNG PHÁT TRIỂN
33 trang 222 0 0 -
8 trang 217 0 0
-
40 trang 203 0 0
-
Tiểu luận Nội dung và bản ý nghĩa di chúc của Chủ tịch Hồ Chí Minh
22 trang 201 0 0 -
Chuyên đề mạng máy tính: Tìm hiểu và Cài đặt Group Policy trên windows sever 2008
18 trang 193 0 0 -
Báo cáo môn học vi xử lý: Khai thác phần mềm Proteus trong mô phỏng điều khiển
33 trang 192 0 0