Danh mục tài liệu

Các bài toán giải phương trình trên tập số phức (Bài tập và hướng dẫn giải)

Số trang: 10      Loại file: doc      Dung lượng: 622.00 KB      Lượt xem: 12      Lượt tải: 0    
Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Tham khảo tài liệu các bài toán giải phương trình trên tập số phức (bài tập và hướng dẫn giải), tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Nội dung trích xuất từ tài liệu:
Các bài toán giải phương trình trên tập số phức (Bài tập và hướng dẫn giải) TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 25 tháng 03 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 BTVN NGÀY 25-03 Giải phương trình trên tập số phức.Bài 1: Giải phương trình: z 2 − (cosϕ + i sin ϕ ) z + icosϕ sin ϕ = 0Bài 2: Giải phương trình: (z + 3z + 6 ) + 2 z ( z 2 + 3 z + 6 ) − 3z 2 = 0(*) 2 2Bài 3: Giải phương trình: z 4 − 4 z 3 + 7 z 2 − 16 z + 12 = 0Bài 4: Giải hệ phương trình: z − w = i  iz − w = 1Bài 5: Giải hệ phương trình:  z − w − zw = 8  2  z + w = −1 2 ………………….Hết………………… BT Viên môn Toán hocmai.vn Trịnh Hào Quang Hocmai.vn – Ngôi trường chung của học trò Việt 1 TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 28 tháng 02 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 Đối với các bài toán về số phức, thông thường cách giải gọi số phức z=a+bi (a, b thực) và coi i như 1 tham số trong bài toán thực sau khi đưa về đơn giản ta lại giải bài toán phức. Đây được coi như phương pháp vạn năng nhất cho mọi bài. Sau này vào Đại học các bạn sẽ làm quen với một môn đi sâu vào nghiên cứu số phức như đạo hàm, nguyên hàm như số thực…là môn hàm số phức. Chúc các bạn học tốt! BTVN NGÀY 21-03 Các phép tính về Số phức và Modul của số phức.Bài 1: Tìm số phức z nếu: ( 2 + 3i ) z = z − 1 Giải: Ta có: −1 3i − 1 1 3 z (1 + 3i ) = −1 ⇔ z = = =− + i 1 + 3i 10 10 10 Bài 2: Giả sử M là điểm trên mặt phẳng tọa độ biểu diễn số phức z. Tìm tập hợp nhữngđiểm M thõa mãn một trong các điều kiện sau: a / z −1+ i = 2 b/ 2+ z > z −2 c / 1 ≤ z +1− i ≤ 2 Giải: a/ Ta thấy : M là điểm trên mặt phẳng tọa độ biểu diễn số phức z và A(1;-1) là điểm biểu diễn số phức z= 1-i . Theo giả thiết ta có: MA=2. Vậy tập hợp những điểm M chính là đường tròn tâm A(1;-1) bán kính là R=2. Page 2 of 10 TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 28 tháng 02 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 b/ Ta có: 2+z =z - (-2) Ta thấy : M là điểm trên mặt phẳng tọa độ biểu diễn số phức z và A(-2;0) là điểm biểu diễn số phức z= -2 , B(2;0) là điểm biểu diễn số phức z= 2. Dựa vào giải thiết ta có: MA>MB => M(nằm bên phải) đường trung trực (x=0) củaA và B. Hay x>0. c/ Ta có: z + 1 − i = z − (−1 + i ) Ta thấy : M là điểm trên mặt phẳng tọa độ biểu diễn số phức z và A(-1;1) là điểm biểu diễn số phức z= -1+i. Ta có: 1 ≤ MA ≤ 2 . Vậy M thuộc miền có hình vành khăn tạo bởi 2 đường tròn tâm A(-1;1) bán kínhlầ n lượt là 1 và 2.Bài 3: Xác định tập hợp các điểm M biểu diễn các số phức z thõa mãn một trong các điềukiện sau. a / z+ z+3 = 4 ( ) 2 b / z2 − z =4 Giải: Đặt: z=a+bi a/ Ta có:  1  a= 2 4 z + z = 2a + 3 ⇔ z + z + 3 = 2a + 3 = 4 ⇔  a = − 7  ...