Danh mục tài liệu

Các bài toán ôn tập 18-05 (Bài tập và hướng dẫn giải)

Số trang: 14      Loại file: doc      Dung lượng: 859.50 KB      Lượt xem: 2      Lượt tải: 0    
Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Tham khảo tài liệu các bài toán ôn tập 18-05 (bài tập và hướng dẫn giải), tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Nội dung trích xuất từ tài liệu:
Các bài toán ôn tập 18-05 (Bài tập và hướng dẫn giải) TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 18 tháng 05 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 BTVN NGÀY 18-05 Bài 1. Tìm tham số m để phương trình: 1, 4 x2 + 1 − x = m có nghiệm 2, 4 x 4 − 13x + m + x − 1 = 0 có đúng một nghiệm Bài 2. Tìm tham số m để bất phương trình: m ( ) x 2 − 2 x + 2 + 1 + x(2 − x) ≤ 0 có nghiệm x ∈ 0;1 + 3    Bài 3. Tìm tham số m để hệ phương trình: 2 x − y − m = 0   có nghiệm duy nhất  x + xy = 1  ………………….Hết………………… BT Viên môn Toán hocmai.vn Trịnh Hào QuangHocmai.vn – Ngôi trường chung của học trò Việt 1 TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 28 tháng 02 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 HDG CÁC BTVN• BTVN NGÀY 12-05  1 3  2x + =  y x 1,  - đây là hệ đối xứng loại II 2 y + 1 = 3   x y - Điều kiện: x ≠ 0; y ≠ 0 1 1 x = y - Trừ vế theo vế ta được: 2( x − y) = 4 −  ⇔  x y  xy = −2 2 Với x = y , hệ tương đương với 2 x = ⇔ x = ±1 x −2 x 3 3x 3 x = 2 → y = − 2 Với xy = −2 ⇒ y = , thế vào pt đầu được: 2 x − = ⇔ = ⇔ x 2 x 2 x x = − 2 → y = 2  { - Vậy hệ có nghiệm: ( x; y ) = ( 1;1) , ( −1; −1) , ( )( 2; − 2 , − 2, 2 )}  1 1   1  x − y = y − x ( x − y ) 1 +  = 0 2,  ⇔  xy  2 y = x3 + 1  2 y = x + 1 3     −1 ± 5 −1 ± 5    ⇒ ĐS: ( x; y ) = ( 1;1) ;   2 ;     2   x(3 x + 2 y )( x + 1) = 12 ( 3 x + 2 y ) ( x 2 + x ) = 12  3,  2 ⇔ x + 2 y + 4x − 8 = 0 ( 3 x + 2 y ) + ( x + x ) = 8 2  Page 2 of 14 TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 28 tháng 02 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 uv = 12 u = 6 u = 2Đặt u = 3 x + 2 y; v = x 2 + x suy ra:  ⇔ ∨ u + v = 8 v = 2 v = 6   11   ( x; y ) = ( −2;6 ) , 1; 3Giải từng trường hợp ta dẫn tới đáp số:   , ( 2; −2 ) ,  −3,     2  2   x2 + y 2 + x + y = 4 ( x + y ) 2 + x + y − 2 xy = 4   x + y = 0 ∨ x + y = −14,  ⇔ ⇔  x( x + y + 1) + y ( y + 1) = 2  xy = −2   xy = −2⇒ ĐS: ( x; y ) = {( )( ) 2; − 2 , − 2, 2 , ( −2,1) , ( 1, −2 ) }  x2 + y2 = 5 5,  4  x − x y + y = 13 2 2 4  - Đây là hệ đối xứng loại I đối với x 2 và y 2 - Đáp số: ( x; y ) = { ( 2; ±1) , ( −2; ±1) , ( 1; ±2 ) , ( −1, ±2 ) } 3x 2 − 2 xy = 16 6,  2 - Đây là hệ đẳng cấp bậc 2  x − 3xy − 2 y = 8 2  - Nhận xét x = 0 không thỏa mãn hệ, ta xét x ≠ 0 , đặt y = tx  x 2 ( 3 − 2t ) = 16  Hệ trở thành:  2  x ( 1 − 3t − 2t ) = 8 2  - Giải hệ này tìm t, x - Đáp số: ( x; y ) = { ( 2; −1) , ( −2,1) }  x2 + 1 ( x 2 + 1) + y ( y + x ) = 4 y  y + ( y + x) = 4  x2 + 1 =1    7,  ⇔ 2 ...