Đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 9 năm 2020-2021 - Sở GD&ĐT Nghệ An (Bảng B)
Thông tin tài liệu:
Nội dung trích xuất từ tài liệu:
Đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 9 năm 2020-2021 - Sở GD&ĐT Nghệ An (Bảng B) SỞ GIÁO DỤC VÀ ĐÀO TẠO KÌ THI CHỌN HỌC SINH GIỎI TỈNH LỚP 9 NGHỆ AN NĂM HỌC 2020 - 2021 Môn thi: TOÁN – BẢNG B ĐỀ CHÍNH THỨC Thời gian: 150 phút (không kể thời gian giao đề) Câu 1 (3,0 điểm). a) Tìm tất cả các cặp số nguyên (x;y) thỏa mãn x 2 − y 2 = 6 x + 8 . b) Chứng minh rằng với mọi số tự nhiên n N * thì n3 + 5n chia hết cho 6. Câu 2 (6,5 điểm). a) Giải phương trình x − 6 = 6 − x − x − 1 x3 + 5 x = y 3 + 5 y b) Giải hệ phương trình 4 2 x + y = 2 Câu 3 (1,5 điểm). Cho ba số thực dương x, y, z thỏa mãn điều kiện x 2 + y 2 + z = 3xy . Chứng x y x3 + y 3 7minh rằng + + . y+z x+z 16 z 8Câu 4 (6,0 điểm). Cho tam giác nhọn ABC có D,E,F lần lượt là chân các đường cao kẻ từ bađỉnh A,B,C của tam giác. Gọi H là trực tâm tam giác ABC và K là trung điểm của HC. a) Chứng minh rằng 4 điểm E, K, D, F cùng thuộc một đường tròn. b) Đường thẳng đi qua K song song với BC cắt DF tại M. Trên tia DE lấy điểm P sao cho MAP = BAC . Chứng minh rằng MA là phân giác FMPCâu 5 (3,0 điểm). a) Cho hình thoi ABCD có ABa. Gọi R1,R2 lần lượt là bán kính đường tròn ngoại tiếp của 1 1 4các tam giác ABC và ABD. Chứng minh rằng 2 + 2 = 2. R1 R2 a b) Cho đa giác đều có 2021 đỉnh, sao cho mỗi đỉnh của đa giác đó chỉ được tô bằng một tronghai màu xanh hoặc đỏ. Chứng minh rằng tồn tại 3 đỉnh của đa giác đã cho là các đỉnh của một tamgiác cân mà các đỉnh đó được tô cùng một màu. ……………Hết…………… Họ và tên thí sinh………………………………… Số báo danh…………………… Chú ý: Thí sinh không được phép sử dụng máy tính bỏ túi.(File word đề+đáp án: zalo 0984024664 (5k))
Tìm kiếm theo từ khóa liên quan:
Đề thi chọn học sinh giỏi Đề thi chọn học sinh giỏi môn Toán Đề thi chọn học sinh giỏi cấp tỉnh môn Toán Đề thi học sinh giỏi Toán 9 năm 2021 Số thực dương Chứng minh biểu thứcTài liệu có liên quan:
-
9 trang 505 0 0
-
Đề thi chọn học sinh giỏi cấp tỉnh THPT môn Hóa học năm 2022 - Sở GD&ĐT Quảng Ninh (Bảng B)
2 trang 144 0 0 -
Đề thi chọn học sinh giỏi môn Tin học lớp 10 năm 2022-2023 - Sở GD&ĐT Vĩnh Phúc
2 trang 59 0 0 -
Đề thi chọn học sinh giỏi môn Hóa học lớp 12 năm 2022-2023 có đáp án - Sở GD&ĐT Thái Bình
7 trang 58 0 0 -
Đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 năm 2023-2024 có đáp án - Sở GD&ĐT Quảng Bình
10 trang 56 0 0 -
Đề thi chọn học sinh giỏi tỉnh năm học 2011-2012 môn Ngữ văn 12 - Sở Giáo dục và Đào tạo Thanh Hóa
6 trang 52 0 0 -
Đề thi chọn học sinh giỏi môn Vật lý lớp 10 năm 2022-2023 - Trường THPT Lao Bảo
2 trang 46 0 0 -
Đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 9 năm 2022-2023 - Phòng GD&ĐT TP. PR-TC, Ninh Thuận
1 trang 44 0 0 -
Đề thi chọn học sinh giỏi môn Ngữ văn lớp 12 năm 2022-2023 có đáp án - Sở GD&ĐT Thái Bình
4 trang 41 1 0 -
Đề ôn thi học sinh giỏi Anh lớp 9 (Số 4)
4 trang 36 0 0