Đề thi học sinh giỏi môn toán lớp 9 năm 2013 tỉnh Hải Dương
Số trang: 6
Loại file: doc
Dung lượng: 282.50 KB
Lượt xem: 11
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
KÌ THI CHỌN HỌC SINH GIỎI TỈNHLỚP 9 THCS NĂM HỌC 2012 – 2013MÔN THI: TOÁNThời gian làm bài: 150 phút (không kể thời gian giao đề)Ngày thi: 27/03/2013( Đề thi gồm có 01 trang )Câu 1 (2,0 điểm): a) Rút gọn biểu thức: với b) Cho . Tính giá trị của biểu thức: B = x5 – 3x4 – 3x3 + 6x2 – 20x + 2018Câu 2 (2,0 điểm):a)Giải phương trình
Nội dung trích xuất từ tài liệu:
Đề thi học sinh giỏi môn toán lớp 9 năm 2013 tỉnh Hải Dương SỞ GD&ĐT HẢI DƯƠNG KÌ THI CHỌN HỌC SINH GIỎI TỈNH LỚP 9 THCS NĂM HỌC 2012 – 2013 MÔN THI: TOÁN ĐỀ THI CHÍNH THỨC Thời gian làm bài: 150 phút (không kể thời gian giao đề) Ngày thi: 27/03/2013 ( Đề thi gồm có 01 trang )Câu 1 (2,0 điểm): ) ( x − 50 − x + 50 x + x 2 − 50 với x a) Rút gọn biểu thức: A = 50 b) Cho x + 3 = 2 . Tính giá trị của biểu thức: B = x5 – 3x4 – 3x3 + 6x2 – 20x + 2018Câu 2 (2,0 điểm): 4x 3x + =6 a) Giải phương trình x − 5x + 6 x − 7x + 6 2 2 x + y + 4 xy = 16 b) Gi¶i hÖ ph¬ng tr×nh sau: x + y = 10Câu 3 (2,0 điểm): a) Với a, b là các số nguyên. Chứng minh rằng nếu 4a 2 + 3ab − 11b 2 chia hết cho 5thì a4 − b4 chia hết cho 5. b) Cho phương trình ax +bx+1= 0 với a, b là các số hữu tỉ. Tìm a, b biết 2 5− 3 là nghiệm của phương trình.x= 5+ 3Câu 4 (3,0 điểm): Cho 3 điểm A, B, C cố định nằm trên một đường thẳng d (B nằm gi ữa A và C).Vẽ đường tròn tâm O thay đổi nhưng luôn đi qua B và C (O không nằm trên đ ườngthẳng d). Kẻ AM và AN là các tiếp tuy ến với đ ường tròn tâm O t ại M và N. G ọi I làtrung điểm của BC, AO cắt MN tại H và cắt đường tròn tại các đi ểm P và Q (P n ằmgiữa A và O), BC cắt MN tại K. a) Chứng minh 4 điểm O, M, N, I cùng nằm trên một đường tròn. b) Chứng minh điểm K cố định khi đường tròn tâm O thay đổi. c) Gọi D là trung điểm HQ, từ H kẻ đường thẳng vuông góc với MD c ắt đ ườngthẳng MP tại E. Chứng minh P là trung điểm ME.Câu 5 (1,0 điểm): 1 Cho A n = với n ᆬ * . (2n +1) 2n −1 Chứng minh rằng: A1 + A 2 + A 3 + ... + A n < 1 . ------------- HẾT ------------ Họ và tên thí sinh: ……………………………… ….. Số báo danh …………….Chữ kí giám thị 1 ………………….. Chữ kí giám thị 2 ………………….. SỞ GD&ĐT HẢI DƯƠNG ĐÁP ÁN VÀ HƯỚNG DẪN CHẤM ĐỀ THI HỌC SINH GIỎI TỈNH MÔN TOÁNLỚP 9 THCS NĂM HỌC 2012 – 2013 Lưu ý: Thí sinh làm theo các khác đúng vẫn cho điểm tối đa. Điểm bài thi làm tròn đến 0,25 điểm PHẦN NỘI DUNG ĐIỂMCÂU Ta có : ) (x+ ( ) 2 0,25 A2 = x 2 - 50 x - 50 - x + 50 )( ) ( A 2 = x - 50 + x + 50 - 2 x 2 - 50 x + x 2 - 50 )( ) = ( 2x - 2 a) 0,25 A2 x 2 - 50 x + x 2 - 50 1,0 ( ) điểm A 2 = 2 x 2 - x 2 + 50Câu 1 0,25 2 A = 100 ) ( 2,0 2 Nhưng do theo giả thiết ta thấy A = x - 50 - x + 50 x + x - 50 x − 2 = − 3 � ( x − 2) = 3 2 0,25 � x2 − ...
Nội dung trích xuất từ tài liệu:
Đề thi học sinh giỏi môn toán lớp 9 năm 2013 tỉnh Hải Dương SỞ GD&ĐT HẢI DƯƠNG KÌ THI CHỌN HỌC SINH GIỎI TỈNH LỚP 9 THCS NĂM HỌC 2012 – 2013 MÔN THI: TOÁN ĐỀ THI CHÍNH THỨC Thời gian làm bài: 150 phút (không kể thời gian giao đề) Ngày thi: 27/03/2013 ( Đề thi gồm có 01 trang )Câu 1 (2,0 điểm): ) ( x − 50 − x + 50 x + x 2 − 50 với x a) Rút gọn biểu thức: A = 50 b) Cho x + 3 = 2 . Tính giá trị của biểu thức: B = x5 – 3x4 – 3x3 + 6x2 – 20x + 2018Câu 2 (2,0 điểm): 4x 3x + =6 a) Giải phương trình x − 5x + 6 x − 7x + 6 2 2 x + y + 4 xy = 16 b) Gi¶i hÖ ph¬ng tr×nh sau: x + y = 10Câu 3 (2,0 điểm): a) Với a, b là các số nguyên. Chứng minh rằng nếu 4a 2 + 3ab − 11b 2 chia hết cho 5thì a4 − b4 chia hết cho 5. b) Cho phương trình ax +bx+1= 0 với a, b là các số hữu tỉ. Tìm a, b biết 2 5− 3 là nghiệm của phương trình.x= 5+ 3Câu 4 (3,0 điểm): Cho 3 điểm A, B, C cố định nằm trên một đường thẳng d (B nằm gi ữa A và C).Vẽ đường tròn tâm O thay đổi nhưng luôn đi qua B và C (O không nằm trên đ ườngthẳng d). Kẻ AM và AN là các tiếp tuy ến với đ ường tròn tâm O t ại M và N. G ọi I làtrung điểm của BC, AO cắt MN tại H và cắt đường tròn tại các đi ểm P và Q (P n ằmgiữa A và O), BC cắt MN tại K. a) Chứng minh 4 điểm O, M, N, I cùng nằm trên một đường tròn. b) Chứng minh điểm K cố định khi đường tròn tâm O thay đổi. c) Gọi D là trung điểm HQ, từ H kẻ đường thẳng vuông góc với MD c ắt đ ườngthẳng MP tại E. Chứng minh P là trung điểm ME.Câu 5 (1,0 điểm): 1 Cho A n = với n ᆬ * . (2n +1) 2n −1 Chứng minh rằng: A1 + A 2 + A 3 + ... + A n < 1 . ------------- HẾT ------------ Họ và tên thí sinh: ……………………………… ….. Số báo danh …………….Chữ kí giám thị 1 ………………….. Chữ kí giám thị 2 ………………….. SỞ GD&ĐT HẢI DƯƠNG ĐÁP ÁN VÀ HƯỚNG DẪN CHẤM ĐỀ THI HỌC SINH GIỎI TỈNH MÔN TOÁNLỚP 9 THCS NĂM HỌC 2012 – 2013 Lưu ý: Thí sinh làm theo các khác đúng vẫn cho điểm tối đa. Điểm bài thi làm tròn đến 0,25 điểm PHẦN NỘI DUNG ĐIỂMCÂU Ta có : ) (x+ ( ) 2 0,25 A2 = x 2 - 50 x - 50 - x + 50 )( ) ( A 2 = x - 50 + x + 50 - 2 x 2 - 50 x + x 2 - 50 )( ) = ( 2x - 2 a) 0,25 A2 x 2 - 50 x + x 2 - 50 1,0 ( ) điểm A 2 = 2 x 2 - x 2 + 50Câu 1 0,25 2 A = 100 ) ( 2,0 2 Nhưng do theo giả thiết ta thấy A = x - 50 - x + 50 x + x - 50 x − 2 = − 3 � ( x − 2) = 3 2 0,25 � x2 − ...
Tìm kiếm theo từ khóa liên quan:
đề thi toán học sinh giỏi toán đề thi tỉnh hải dương bài tập toán học bài tập toán học sinh giỏi đề thi học sinh giỏi toán năm 2013Tài liệu có liên quan:
-
Các phương pháp tìm nhanh đáp án môn Toán: Phần 2
166 trang 214 0 0 -
Kiểm tra định kì học kì II năm học 2014–2015 môn Toán lớp 4 - Trường TH Thái Sanh Hạnh
3 trang 119 0 0 -
Tài liệu ôn luyện chuẩn bị cho kỳ thi THPT Quốc gia môn Toán: Phần 2
135 trang 86 0 0 -
Đề thi và đáp án môn: Toán cao cấp A1
3 trang 68 0 0 -
Đề thi Olympic Toán sinh viên Trường Đại học Bách Khoa Hà Nội- Môn GIẢI TÍCH
1 trang 65 1 0 -
CHỨNH MINH BA ĐIỂM THẲNG HÀNG NHỜ SỬ DỤNG ĐỊNH LÝ THALES
4 trang 60 0 0 -
144 trang 50 1 0
-
Đề thi thử THPT Quốc gia 2015 lần 1 môn Toán
5 trang 44 0 0 -
Đề thi tốt nghiệp THPT năm học 2004-2005 môn Toán
1 trang 40 0 0 -
Đề thi thử THPT Quốc gia môn Toán năm học 2015-2016
1 trang 39 0 0