Đề Thi Thử Đại Học Khối A, A1, B, D Toán 2013 - Phần 37 - Đề 10 (có đáp án)
Số trang: 4
Loại file: pdf
Dung lượng: 218.12 KB
Lượt xem: 10
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Tham khảo đề thi - kiểm tra đề thi thử đại học khối a, a1, b, d toán 2013 - phần 37 - đề 10 (có đáp án), tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Nội dung trích xuất từ tài liệu:
Đề Thi Thử Đại Học Khối A, A1, B, D Toán 2013 - Phần 37 - Đề 10 (có đáp án) ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNGPHẦN CHUNG CHO TẤT CẢ THÍ SINH (7 điểm): 2x 2Câu I: (2 điểm) Cho hàm số y (C) x 11. Khảo sát hàm số.2. Tìm m để đường thẳng d: y = 2x + m cắt đồ thị (C) tại 2 điểm phân biệt A, B sao cho AB = 5 .Câu II: (2 điểm)1. Giải phương trình: 2 cos 5 x. cos 3x sin x cos8 x , (x R) x y x y 2 y 2. Giải hệ phương trình: (x, y R) x 5y 3 Câu III: (1 điểm) Tính diện tích hình phẳng giới hạn bởi các đường y e x 1 ,trục hoành, x = ln3và x = ln8.Câu IV: (1 điểm) Cho hình chóp S.ABCD có đáy ABCD là hình thoi ; hai đường chéo AC = 2 3a ,BD = 2a và cắt nhau tại O; hai mặt phẳng (SAC) và (SBD) cùng vuông góc với mặt phẳng (ABCD). a 3Biết khoảng cách từ điểm O đến mặt phẳng (SAB) bằng , tính thể tích khối chóp S.ABCD theo a. 4Câu V: (1 điểm) Cho x,y R và x, y > 1. Tìm giá trị nhỏ nhất của P x3 y3 x2 y2 ( x 1)( y 1)PHẦN RIÊNG (3 điểm) : Thí sinh chỉ được làm một trong hai phần ( phần A hoặc B)A. Theo chương trình ChuẩnCâu VI.a (2 điểm)1. Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn (C): x2 + y2 - 2x - 2my + m2 - 24 = 0 có tâm I và đường thẳng : mx + 4y = 0. Tìm m biết đường thẳng cắt đường tròn (C) tại hai điểm phân biệt A,B thỏa mãn diện tích tam giác IAB bằng 12. x 1 y 1 z 12. Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1: ; 2 1 1 x 1 y 2 z 1 d2: và mặt phẳng (P): x - y - 2z + 3 = 0. Viết phương trình chính tắc của 1 1 2 đường thẳng , biết nằm trên mặt phẳng (P) và cắt hai đường thẳng d1 , d2 . log2 xCâu VII.a (1 điểm) Giải bất phương trình 2 2 x 2log2 x 20 0B. Theo chương trình Nâng caoCâu VI.b (2 điểm)1. Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có phương trình cạnh AB: x - y - 2 = 0, phương trình cạnh AC: x + 2y - 5 = 0. Biết trọng tâm của tam giác G(3; 2). Viết phương trình cạnh BC. x 1 y 3 z3. Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng : và điểm 1 1 4 M(0 ; - 2 ; 0). Viết phương trình mặt phẳng (P) đi qua điểm M song song với đường thẳng đồng thời khoảng cách giữa đường thẳng và mặt phẳng (P) bằng 4. 25Câu VII.b (1 điểm) Giải phương trình nghiệm phức : z 8 6i z ….. Hết …. ĐÁP ÁN ĐỀ THI THỬ ĐẠI HỌC, CAO I-2(1 điểm) Phương trình hoành độ giao điểm: 2x2 + mx + m + 2 = 0 , (x≠ - 1) (1) d cắt (C) tại 2 điểm phân biệt PT(1) có 2 nghiệm phân biệt khác -1 m2 - 8m - 16 > 0 (2) Gọi A(x1; 2x1 + m) , B(x2; 2x2 + m. Ta có x1,x2 là 2 nghiệm của PT(1). m x1 x2 2 Theo ĐL Viét ta có . AB2 = 5 ( x1 x2 )2 4( x1 x2 )2 5 ( x1 x2 )2 4x1 x2 1 m2 - x1 x2 m 2 28m - 20 = 0 m = 10 , m = - 2 ( Thỏa mãn (2))KL: m = 10, m = - 2. II-1 1(1 điểm PT cos2x + cos8x + sinx = cos8x 1- 2sin2 x + sinx = 0 sinx = 1 v sin x 2 7 x k 2 ; x k 2 ; x k 2 , (k Z ) 2 6 6II-2(1 điểm) ĐK: x + y 0 , x - y 0, y 0 PT(1) 2 x 2 x 2 y 2 4 y x 2 y 2 2 y x 2 y x 0 (3) 2 Từ PT(4) y = 0 v 5y = 4x 5 y 4 xy (4)Với y = 0 thế vào PT(2) ta có x = 9 (Không thỏa mãn đk (3)) Với 5y = 4x thế vào PT(2) ta có 4 x 2 x 3 x 1 KL: HPT có 1 nghiệm ( x; y ) 1; 5 ln 8 S x x 2 x x 2III(1 điểm) Diện tích S e 1dx ; Đặt t e 1 t e 1 e t 1 Khi x = ln3 thì t = 2 ; Khi ln 3 2tx = ln8 thì t = 3; Ta có 2tdt = exdx dx 2 dt t 1 3 3 2t 2 2 t 1 3 3 IDo đó S 2 dt 2 2 dt = 2t ln 2 2 ln 2 (đvdt) D t 1 t 1 t 1 ...
Nội dung trích xuất từ tài liệu:
Đề Thi Thử Đại Học Khối A, A1, B, D Toán 2013 - Phần 37 - Đề 10 (có đáp án) ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNGPHẦN CHUNG CHO TẤT CẢ THÍ SINH (7 điểm): 2x 2Câu I: (2 điểm) Cho hàm số y (C) x 11. Khảo sát hàm số.2. Tìm m để đường thẳng d: y = 2x + m cắt đồ thị (C) tại 2 điểm phân biệt A, B sao cho AB = 5 .Câu II: (2 điểm)1. Giải phương trình: 2 cos 5 x. cos 3x sin x cos8 x , (x R) x y x y 2 y 2. Giải hệ phương trình: (x, y R) x 5y 3 Câu III: (1 điểm) Tính diện tích hình phẳng giới hạn bởi các đường y e x 1 ,trục hoành, x = ln3và x = ln8.Câu IV: (1 điểm) Cho hình chóp S.ABCD có đáy ABCD là hình thoi ; hai đường chéo AC = 2 3a ,BD = 2a và cắt nhau tại O; hai mặt phẳng (SAC) và (SBD) cùng vuông góc với mặt phẳng (ABCD). a 3Biết khoảng cách từ điểm O đến mặt phẳng (SAB) bằng , tính thể tích khối chóp S.ABCD theo a. 4Câu V: (1 điểm) Cho x,y R và x, y > 1. Tìm giá trị nhỏ nhất của P x3 y3 x2 y2 ( x 1)( y 1)PHẦN RIÊNG (3 điểm) : Thí sinh chỉ được làm một trong hai phần ( phần A hoặc B)A. Theo chương trình ChuẩnCâu VI.a (2 điểm)1. Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn (C): x2 + y2 - 2x - 2my + m2 - 24 = 0 có tâm I và đường thẳng : mx + 4y = 0. Tìm m biết đường thẳng cắt đường tròn (C) tại hai điểm phân biệt A,B thỏa mãn diện tích tam giác IAB bằng 12. x 1 y 1 z 12. Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1: ; 2 1 1 x 1 y 2 z 1 d2: và mặt phẳng (P): x - y - 2z + 3 = 0. Viết phương trình chính tắc của 1 1 2 đường thẳng , biết nằm trên mặt phẳng (P) và cắt hai đường thẳng d1 , d2 . log2 xCâu VII.a (1 điểm) Giải bất phương trình 2 2 x 2log2 x 20 0B. Theo chương trình Nâng caoCâu VI.b (2 điểm)1. Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có phương trình cạnh AB: x - y - 2 = 0, phương trình cạnh AC: x + 2y - 5 = 0. Biết trọng tâm của tam giác G(3; 2). Viết phương trình cạnh BC. x 1 y 3 z3. Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng : và điểm 1 1 4 M(0 ; - 2 ; 0). Viết phương trình mặt phẳng (P) đi qua điểm M song song với đường thẳng đồng thời khoảng cách giữa đường thẳng và mặt phẳng (P) bằng 4. 25Câu VII.b (1 điểm) Giải phương trình nghiệm phức : z 8 6i z ….. Hết …. ĐÁP ÁN ĐỀ THI THỬ ĐẠI HỌC, CAO I-2(1 điểm) Phương trình hoành độ giao điểm: 2x2 + mx + m + 2 = 0 , (x≠ - 1) (1) d cắt (C) tại 2 điểm phân biệt PT(1) có 2 nghiệm phân biệt khác -1 m2 - 8m - 16 > 0 (2) Gọi A(x1; 2x1 + m) , B(x2; 2x2 + m. Ta có x1,x2 là 2 nghiệm của PT(1). m x1 x2 2 Theo ĐL Viét ta có . AB2 = 5 ( x1 x2 )2 4( x1 x2 )2 5 ( x1 x2 )2 4x1 x2 1 m2 - x1 x2 m 2 28m - 20 = 0 m = 10 , m = - 2 ( Thỏa mãn (2))KL: m = 10, m = - 2. II-1 1(1 điểm PT cos2x + cos8x + sinx = cos8x 1- 2sin2 x + sinx = 0 sinx = 1 v sin x 2 7 x k 2 ; x k 2 ; x k 2 , (k Z ) 2 6 6II-2(1 điểm) ĐK: x + y 0 , x - y 0, y 0 PT(1) 2 x 2 x 2 y 2 4 y x 2 y 2 2 y x 2 y x 0 (3) 2 Từ PT(4) y = 0 v 5y = 4x 5 y 4 xy (4)Với y = 0 thế vào PT(2) ta có x = 9 (Không thỏa mãn đk (3)) Với 5y = 4x thế vào PT(2) ta có 4 x 2 x 3 x 1 KL: HPT có 1 nghiệm ( x; y ) 1; 5 ln 8 S x x 2 x x 2III(1 điểm) Diện tích S e 1dx ; Đặt t e 1 t e 1 e t 1 Khi x = ln3 thì t = 2 ; Khi ln 3 2tx = ln8 thì t = 3; Ta có 2tdt = exdx dx 2 dt t 1 3 3 2t 2 2 t 1 3 3 IDo đó S 2 dt 2 2 dt = 2t ln 2 2 ln 2 (đvdt) D t 1 t 1 t 1 ...
Tìm kiếm theo từ khóa liên quan:
đề thi toán học đề thi thử đại học đề thi đại học môn toán đề thi toán 2013 đề thi thử môn toán đề thi thử đại học môn toán 2013Tài liệu có liên quan:
-
Đề thi thử đại học môn Vật lý - Khối A, A1, V: Đề số 7
5 trang 104 1 0 -
Tài liệu ôn luyện chuẩn bị cho kỳ thi THPT Quốc gia môn Toán: Phần 2
135 trang 86 0 0 -
150 đề thi thử đại học môn Toán
155 trang 54 0 0 -
144 trang 50 1 0
-
Trắc nghiệm sinh học phần kỹ thuật di truyền + đáp án
6 trang 46 0 0 -
Đề thi chọn học sinh giỏi tỉnh Phú Yên
5 trang 46 0 0 -
11 trang 45 0 0
-
60 ĐỀ TOÁN ÔN THI TN THPT (có đáp án) Đề số 59
2 trang 41 0 0 -
Lời giải đề thi học sinh giỏi quốc gia môn toán học
21 trang 41 0 0 -
Đề thi thử trường THCS-THPT Hồng Vân
6 trang 40 0 0