Danh mục tài liệu

Đề thi thử đại học môn Toán 2011 - đề 16

Số trang: 4      Loại file: pdf      Dung lượng: 260.11 KB      Lượt xem: 20      Lượt tải: 0    
Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Tham khảo tài liệu đề thi thử đại học môn toán 2011 - đề 16, tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Nội dung trích xuất từ tài liệu:
Đề thi thử đại học môn Toán 2011 - đề 16 TDT ĐỀ THI THỬ ĐẠI HỌC VÀ CAO ĐẲNG NĂM 2010 Môn thi: TOÁN Thời gian: 180 phút (không kể thời gian phát đề) Đề số 16I. PHẦN CHUNG (7 điểm)Câu I (2 điểm): Cho hàm số y = x 3 + 3 x 2 + mx + 1 có đồ thị là (Cm); ( m là tham số). 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số khi m = 3. 2) Xác định m để (Cm) cắt đường thẳng y = 1 tại ba điểm phân biệt C(0;1), D, E sao cho các tiếp tuyến của (Cm) tại D và E vuông góc với nhau.Câu II (2 điểm): cos 2 x + cos 3 x - 1 cos 2 x - tan x = 2 1) Giải phương trình: cos 2 x ì x 2 + y 2 + xy + 1 = 4 y í 2) Giải hệ phương trình: î y ( x + y) = 2 x + 7 y + 2 2 2 e log3 x òx I= I = 2 dxCâu III (1 điểm): Tính tích phân: 1 + 3ln 2 x 1 a3 và góc BAD = 600. Gọi MCâu IV (1 điểm): Cho hình hộp đứng ABCD.ABCD có các cạ nh AB = AD = a, AA = 2 và N lần lượt là trung điểm của các cạ nh AD và AB. Chứng minh AC vuông góc với mặt phẳng (BDMN). Tính thể tích khối chóp A.BDMN.Câu V (1 điểm): Cho a, b, c là các số thực không âm thỏa mãn a + b + c = 1 . Chứng minh rằng: 7 ab + bc + ca - 2abc £ 27II. PHẦN TỰ CHỌN (3 điểm)1. Theo chương trình chuẩnCâu VI.a (2 điểm): 1) Trong mặt phẳng với hệ toạ độ Oxy, cho tam giác ABC biết A(5; 2). Phương trình đường trung trực cạnh BC, đường trung tuyến CC’ lần lượt là x + y – 6 = 0 và 2x – y + 3 = 0. Tìm tọa độ các đỉnh của tam giác ABC. 2) Trong không gian với hệ toạ độ Oxyz, hãy xác định toạ độ tâm và bán kính đường tròn ngoại tiếp tam giác ABC, biết A(–1; 0; 1), B(1; 2; –1), C(–1; 2; 3).Câu VII.a (1 điểm): Cho z1 , z2 là các nghiệm phức của phương trình 2 z 2 - 4 z + 11 = 0 . Tính giá trị của biểu thức : 2 2 z1 + z2 . ( z1 + z2 )22. Theo chương trình nâng caoCâu VI.b (2 điểm): 1) Trong mặt phẳng với hệ toạ độ Oxy, cho hai đường thẳng D : x + 3 y + 8 = 0 , D :3x - 4 y + 10 = 0 và điểm A(–2; 1). Viết phương trình đường tròn có tâm thuộc đường thẳng D , đi qua điểm A và tiếp xúc với đường thẳng D ’ 2) Trong không gian với hệ toạ độ Oxyz, cho ba điểm A(0; 1; 2), B(2; –2; 1), C(–2; 0; 1). Viết phương trình mặt phẳng (ABC) và tìm điểm M thuộc mặt phẳng (P): 2 x + 2 y + z – 3 = 0 sao cho MA = MB = MC . ì2log1- x (- xy - 2 x + y + 2) + log 2 + y ( x 2 - 2 x + 1) = 6 ïCâu VII.b (1 điểm): Giải hệ phương trình: í ïlog1- x ( y + 5) - log 2 + y ( x + 4) =1 î ============================Trần Sĩ Tùng Hướng dẫn:I. PHẦN CHUNG éx = 0Câu I: 2) PT hoành độ giao điểm: x 3 + 3 x 2 + mx + 1 = 1 Û x ( x 2 + 3 x + m ) = 0 Û ê 2 ë f ( x) = x + 3x + m = 0 Đê thỏa mãn YCBT thì PT f ( x ) = 0 có 2 nghiệm phân biệt x , x khác 0 và y¢ ( x ) .y¢ ( x ) = -1 . 1 2 1 2 ì9 - 4m > 0, f ( ...