![Phân tích tư tưởng của nhân dân qua đoạn thơ: Những người vợ nhớ chồng… Những cuộc đời đã hóa sông núi ta trong Đất nước của Nguyễn Khoa Điềm](https://thuvienso.net/upload/document/136415/phan-tich-tu-tuong-cua-nhan-dan-qua-doan-tho-039-039-nhung-nguoi-vo-nho-chong-nhung-cuoc-doi-da-hoa-song-nui-ta-039-039-trong-dat-nuoc-cua-nguyen-khoa-136415.jpg)
PHƯƠNG TRÌNH, BẤT PHƯƠNG TRÌNH CHỨA CĂN
Số trang: 3
Loại file: doc
Dung lượng: 266.50 KB
Lượt xem: 45
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Khai căn, hay căn, căn thức... là phép toán ngược, dùng để tìm cơ số của phép lũy thừa. a^n=b \iff \sqrt[n]{b}=a. n (là số tự nhiên khác 0) gọi là chỉ số, bậc của căn thức.
Nội dung trích xuất từ tài liệu:
PHƯƠNG TRÌNH, BẤT PHƯƠNG TRÌNH CHỨA CĂNGiáo viên: Trần Văn Hung ̀ - THPT Nguyễn Bỉnh Khiêm Chuyên đề: PHƯƠNG TRÌNH CHỨA CĂNCác kiến thức cần nhớ: B ≥ 0 B ≥ 0 1) Dạng cơ bản: • A = B ⇔ • A= B⇔ A = B A = B 2 2) Tổng quát: - Phương pháp chung là bình phương, lập phương hai vế của phương trình đã cho để khử dấu căn,sau khi đã đặt điều kiện cho phương trình mới tương đương với hệ đã cho. - Nếu phép bình phương, lập phương dẫn đến phương trình bậc cao, phức tạp thì ta tìm cách biếnđổi thành tích hoặc dùng ẩn phụ.Bài tập:Bài 1: Giải các phương trình: a) 3x 2 − 9 x + 1 =| x − 2 | x2 − 2x − 4 = 2 − x b) x + 1 = 8 − 3x + 1 3x 2 − 9 x + 1 = x − 2 c) d) 3x + 7 − x + 1 = 2 x 2 + x − 5 + x 2 + 8x − 4 = 5 e) f) g) x + 9 = 5 − 2 x + 4 h) 16 − x + 9 + x = 7Bài 2: Giải các phương trình: a) x 2 − 3x + 3 + x 2 − 3x + 6 = 3 x 2 + x + 7 + x 2 + x + 2 = 3x 2 + 3x + 19 b) x2 + 9 − x2 − 7 = 2 3x 2 + 6 x + 16 + x 2 + 2 x = 2 x 2 + 2 x + 4 c) d) e) ( x + 1)( x + 4) − 3 x 2 + 5x + 2 = 6 f) ( x − 3) 2 + 3x − 22 = x 2 − 3x + 7Bài 3: Giải các phương trình: a) x 2 − 1 = x + 1 b) x 2 + x + 1 = 1 x + 3 + x − 6 = (2 + x )(6 − x ) + 3 c) 7 − x 2 + x x + 5 = 3 − 2 x − x 2 d)Bài 4: Giải các phương trình: x+4 + x−4 = x + x 2 − 16 − 6 x +1 = x − 3 3 a) b) 2 d) 3 x − 9 = ( x − 3)3 + 6 c) x 3 + 1 = 23 2 x − 1Bài 5: Giải các phương trình: a) x + 2 + 2 x + 1 + x + 2 − 2 x + 1 = 2 b) x − 2 + 2 x − 5 + x + 2 + 3 2 x − 5 = 7 2 3+ x 114 2 = + + x + 5 − 4 x +1 + x + 2 − 2 x +1 = 1 c) d) 9 x 9 x2 3xBài 6: Giải các phương trình sau: a) 3 x + 34 − 3 x − 3 = 1 5x + 7 − 3 5x − 12 = 1 c) x − 2 + 3 2x − 3 = 1 3 3 b) 2x + 2 + 3 x − 2 = 3 9x 3 9 − x +1 + 3 7 + x +1 = 4 d) e) 3(Dạng: 3 A + 3 B = 3 C (1), lập phương hai vế rồi thay 3 A + 3 B = 3 C ta được phương trình hệ quả(2): A + B + 33 ABC = C . Vì vậy phải thử lại nghiệm của (2) đối với (1))Bài 7: Tìm m để phương trình sau có nghiệm: x − 1 + 3 − x − x − 1. 3 − x = mBài 8: Tìm m để phương trình: 4 x − x 2 = x + m a) Có nhgiệm b) Có hai nghiệm phân biệtBài 9: Tìm m để phương trình sau có nghiệm: x + 9 − x = − x2 + 9x + m x 2 + x +1 − x 2 − x +1 = m a) b)Bài 10: Biện luận theo m số nghiệm của phương trình: 2 ( 2 + x )( 4 − x ) + x 2 − 2 x + m = 0Giáo viên: Trần Văn Hung ̀ - THPT Nguyễn Bỉnh Khiêm MỘT SỐ ĐỀ THI ĐẠI HỌC(D-2005). Giải phương trình: 2 x + 2 + 2 x + 1 - x + 1 = 4 2 x − 1 + x 2 − 3x + 1 = 0(D-2006). Giải phương trình:(B-2006) Tìm m để phương trình sau có 2 nghiệm phân biệt: x 2 + mx + 2 = 2x + 1(B-2004). Xác định m để phương trình sau có nghiệm: ) ( 1 + x2 − 1 − x2 + 2 = 2 1 − x4 + 1 + x2 − 1 − x2 m(B-2007). Chứng minh rằng với mọi m > 0, phương trình sau luôn có hai nhiệm thực phân biệt: x 2 + 2 x − 8 = m( x − 2)(A-2007). Xác định m để phương trình sau có nghiệm: 3 x − 1 + m x + 1 = 2 4 x2 − 1(A-2008). Tìm m để phương trình sau luôn có hai nghiệm thực phân biệt: 2x + 2x + 2 4 6 − x + 2 6 − x = m 4(A-2009). Giải phương trình: 2 3 3x − 2 + 3 6 − 5 x − 8 = 0 3 3(D-2010). Giải phương trình: 42 x + x+2 ...
Nội dung trích xuất từ tài liệu:
PHƯƠNG TRÌNH, BẤT PHƯƠNG TRÌNH CHỨA CĂNGiáo viên: Trần Văn Hung ̀ - THPT Nguyễn Bỉnh Khiêm Chuyên đề: PHƯƠNG TRÌNH CHỨA CĂNCác kiến thức cần nhớ: B ≥ 0 B ≥ 0 1) Dạng cơ bản: • A = B ⇔ • A= B⇔ A = B A = B 2 2) Tổng quát: - Phương pháp chung là bình phương, lập phương hai vế của phương trình đã cho để khử dấu căn,sau khi đã đặt điều kiện cho phương trình mới tương đương với hệ đã cho. - Nếu phép bình phương, lập phương dẫn đến phương trình bậc cao, phức tạp thì ta tìm cách biếnđổi thành tích hoặc dùng ẩn phụ.Bài tập:Bài 1: Giải các phương trình: a) 3x 2 − 9 x + 1 =| x − 2 | x2 − 2x − 4 = 2 − x b) x + 1 = 8 − 3x + 1 3x 2 − 9 x + 1 = x − 2 c) d) 3x + 7 − x + 1 = 2 x 2 + x − 5 + x 2 + 8x − 4 = 5 e) f) g) x + 9 = 5 − 2 x + 4 h) 16 − x + 9 + x = 7Bài 2: Giải các phương trình: a) x 2 − 3x + 3 + x 2 − 3x + 6 = 3 x 2 + x + 7 + x 2 + x + 2 = 3x 2 + 3x + 19 b) x2 + 9 − x2 − 7 = 2 3x 2 + 6 x + 16 + x 2 + 2 x = 2 x 2 + 2 x + 4 c) d) e) ( x + 1)( x + 4) − 3 x 2 + 5x + 2 = 6 f) ( x − 3) 2 + 3x − 22 = x 2 − 3x + 7Bài 3: Giải các phương trình: a) x 2 − 1 = x + 1 b) x 2 + x + 1 = 1 x + 3 + x − 6 = (2 + x )(6 − x ) + 3 c) 7 − x 2 + x x + 5 = 3 − 2 x − x 2 d)Bài 4: Giải các phương trình: x+4 + x−4 = x + x 2 − 16 − 6 x +1 = x − 3 3 a) b) 2 d) 3 x − 9 = ( x − 3)3 + 6 c) x 3 + 1 = 23 2 x − 1Bài 5: Giải các phương trình: a) x + 2 + 2 x + 1 + x + 2 − 2 x + 1 = 2 b) x − 2 + 2 x − 5 + x + 2 + 3 2 x − 5 = 7 2 3+ x 114 2 = + + x + 5 − 4 x +1 + x + 2 − 2 x +1 = 1 c) d) 9 x 9 x2 3xBài 6: Giải các phương trình sau: a) 3 x + 34 − 3 x − 3 = 1 5x + 7 − 3 5x − 12 = 1 c) x − 2 + 3 2x − 3 = 1 3 3 b) 2x + 2 + 3 x − 2 = 3 9x 3 9 − x +1 + 3 7 + x +1 = 4 d) e) 3(Dạng: 3 A + 3 B = 3 C (1), lập phương hai vế rồi thay 3 A + 3 B = 3 C ta được phương trình hệ quả(2): A + B + 33 ABC = C . Vì vậy phải thử lại nghiệm của (2) đối với (1))Bài 7: Tìm m để phương trình sau có nghiệm: x − 1 + 3 − x − x − 1. 3 − x = mBài 8: Tìm m để phương trình: 4 x − x 2 = x + m a) Có nhgiệm b) Có hai nghiệm phân biệtBài 9: Tìm m để phương trình sau có nghiệm: x + 9 − x = − x2 + 9x + m x 2 + x +1 − x 2 − x +1 = m a) b)Bài 10: Biện luận theo m số nghiệm của phương trình: 2 ( 2 + x )( 4 − x ) + x 2 − 2 x + m = 0Giáo viên: Trần Văn Hung ̀ - THPT Nguyễn Bỉnh Khiêm MỘT SỐ ĐỀ THI ĐẠI HỌC(D-2005). Giải phương trình: 2 x + 2 + 2 x + 1 - x + 1 = 4 2 x − 1 + x 2 − 3x + 1 = 0(D-2006). Giải phương trình:(B-2006) Tìm m để phương trình sau có 2 nghiệm phân biệt: x 2 + mx + 2 = 2x + 1(B-2004). Xác định m để phương trình sau có nghiệm: ) ( 1 + x2 − 1 − x2 + 2 = 2 1 − x4 + 1 + x2 − 1 − x2 m(B-2007). Chứng minh rằng với mọi m > 0, phương trình sau luôn có hai nhiệm thực phân biệt: x 2 + 2 x − 8 = m( x − 2)(A-2007). Xác định m để phương trình sau có nghiệm: 3 x − 1 + m x + 1 = 2 4 x2 − 1(A-2008). Tìm m để phương trình sau luôn có hai nghiệm thực phân biệt: 2x + 2x + 2 4 6 − x + 2 6 − x = m 4(A-2009). Giải phương trình: 2 3 3x − 2 + 3 6 − 5 x − 8 = 0 3 3(D-2010). Giải phương trình: 42 x + x+2 ...
Tìm kiếm theo từ khóa liên quan:
ôn thi đại học môn toán tài liệu toán học 12 bài tập toán học 12 phương trình chứa căn bất phương trình có cănTài liệu có liên quan:
-
GIÁO TRÌNH MATLAB (phụ lục lệnh và hàm)
8 trang 53 0 0 -
150 đề thi thử đại học môn Toán
155 trang 52 0 0 -
9 trang 42 0 0
-
Một số phương pháp và bài tập giải phương trình vô tỷ
41 trang 35 0 0 -
Bài tập - Phương trình đường thẳng
7 trang 34 0 0 -
Phương trình đường thẳng trong không gian
14 trang 31 0 0 -
Toán ôn thi Đại học - Chuyên đề 3: Đại số
27 trang 30 0 0 -
68 trang 28 0 0
-
VECTƠ VÀ CÁC PHÉP TOÁN TRONG KHÔNG GIAN TỌA ĐỘ
1 trang 27 0 0 -
Ôn thi tốt nghiệp, Đại học, Cao đẳng phần hàm số và đồ thị
24 trang 27 0 0 -
Tài liệu tham khảo: ĐƯỜNG TRÒN
8 trang 27 0 0 -
Luyện thi Đại học - Chuyên đề Cực trị hàm số
12 trang 25 0 0 -
Các chuyên đề luyện thi Đại học - Trần Anh Tuấn
145 trang 25 0 0 -
TÀI LIỆU THAM KHẢO: HÌNH HỌC KHÔNG GIAN
10 trang 24 0 0 -
Phép tính tích phân và ứng dụng
26 trang 24 0 0 -
Những bài toán tính toán về số phức
2 trang 24 0 0 -
Bài toán về cực trị - GV. Nguyễn Vũ Minh
8 trang 24 0 0 -
ĐỀ THI THỬ MÔN TOÁN NĂM 2011 - ĐỀ SỐ 15
8 trang 24 0 0 -
Hệ phương trình qua các kì thi Đại học từ 2002 - 2014
4 trang 23 0 0 -
3 trang 23 0 0