Danh mục tài liệu

ĐỀ THI THỬ ĐẠI HỌC MÔN TOÁN NĂM 2012-2013 Đề Số 30

Số trang: 7      Loại file: doc      Dung lượng: 244.00 KB      Lượt xem: 11      Lượt tải: 0    
Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Tham khảo đề thi - kiểm tra đề thi thử đại học môn toán năm 2012-2013 đề số 30, tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Nội dung trích xuất từ tài liệu:
ĐỀ THI THỬ ĐẠI HỌC MÔN TOÁN NĂM 2012-2013 Đề Số 30 ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG NĂM 2012 -2013 Môn thi : TOÁN (ĐỀ 30)Câu 1. (2,5 điểm). − x2 + 2 x − 5 1. Cho hàm số (C) : y = x −1 a) Khảo sát và vẽ đồ thị hàm số b) Tìm M ∈ (C) để tổng các khoảng cách từ M đến 2 tiệm cận là nhỏ nhất 2. Từ một điểm bất kì trên đường thẳng x = 2 có thể kẻ được bao nhiêu tiếp tuyến đến đồ thị (C’) : y = x 3 − 6 x 2 + 9 x − 1Câu 2. (1,5 điểm) 1. Giải phương trình: 3.25 x −2 + ( 3x − 10 ) 5 x −2 = x − 3  sin x + sin y = 2 2. Giải hệ phương trình:  cos x + cos y = 2 Câu 3. (1,5 điểm) log x ( cos x − sin x ) + log 1 ( cos x + cos 2 x ) = 0 1. Giải phương trình: . x 2. Giải bất phương trình: (x 3 ) ( ) + 1 + x 2 + 1 + 3x x + 1 > 0 3. Có bao nhiêu số tự nhiên gồm 5 chữ số sao cho trong mỗi số các chữ số đứngtrước đều lớn hơn chữ số đứng liền sau nó.Câu 4. (2 điểm) 1. Trong hệ toạ độ Oxyz cho 2 điểm A(0; 0; -3); B(2, 0, - 1) và mp(P):3x – 8y + 7z – 1 =0 Tìm toạ độ điểm C ∈ (P) sao cho ∆ ABC là tam giác đều. 2. Cho tứ diện ABCD có AB = CD = a, AC = BD = b, AD = BC = c. Hãy xác định các góc hợp bởi các cạnh đối diện của tứ diện đó.Câu 5. (2,5 điểm). π /4 1 x sin x 1. Tính : I = � 3 dx ; J = � x 2 − 2 x + 2dx x 0 cos x 0 2. Cho 3 số dương a, b, c. Chứng minh rằng: 1 1 1 a+b+c + 2 + 2 . a + bc b + ac c + ab 2 2abc 1 3 1 2 3 2 3. Cho z = − + i , Hãy tính : ; z; z ;(z) ;1 + z + z 2 2 z (Hết) HƯỚNG DẪN GIẢI: (đề số 30)Câu Ý Nội dung Điểm I 2.5 b Tìm M ∈ (C) để tổng các khoảng cách đến 2 tiệm cận nhỏ nhất 0,75 4 4 X = −x + 1  y = −x +1− � Y = X + . Với  0.25 x −1 X Y = y TCĐ d: X = 0, TCX d’: X - Y = 0 ⇒ T = d(M, d) + d(M, d’) = | X −Y | 4 4 | X |+ =| X | + = 4 27 Dấu = xảy ra ⇔ 2 |X| 2 2 0.5 4 4 | X |= X2 = � X = �� 4 3 2 x = 1 � 23 4 |X| 2 2 • Gọi M(2; m) ∈ d1: x = 2. Khi đó đt d ∋ M ⇒ d: y = k(x -2) + m. Để đt d tiếp xúc với  x 3 − 6 x 2 + 9 x − 1 = k ( x − 2) + m 0,25 (C’) ⇔ hệ:  2 có nghiệm 3 x − 12 x + 9 = k ⇔ 2x3 -12.x2 + 24x - 17 + m = 0 (1) có nghiệm. • Số tiếp tuyến kẻ từ M đến (C’) là số nghiệm của Pt (1) • Xét hàm số y = 2x3 -12.x2 + 24x - 17 + m ⇒ y’ = 6(x-2)2 ≥ 0 ∀x ⇒ Hàm luôn đồng biến ⇒ Pt (1) luôn có 0,5 nghiệm duy nhất ⇒ từ một điểm trên đt x = 2 luôn kẻ được một tiếp tuyến đến đồ thị (C’).II 1,5 1 Giải phương trình: 0,75 3.25 x −2 + ( 3x − 10 ) 5 x −2 = x−3 ( ) ( ) ( ⇔ 5 x−2 3.5 x−2 − 1 + x 3.5 x −2 − 1 − 3 3.5 x−2 − 1 = 0 ) 0.25 ( )( ⇔ 3.5 x −2 − 1 5 x −2 + x − 3 = 0 ) 3.5 x−2 − 1 = 0 (1) ⇔  x−2 5 + x − 3 = 0 ( 2)  0.25 (1) ⇔ 5x−2 = 1 ⇔ x = 2 + log 5 1 = 2 − log5 3 3 3 ( 2 ) ⇔ 5 x−2 = − x + 3 Vế trái là hàm đồng biến vế phải là hàm nghịch biến mà (2) có nghiệm x = 2 nên là nghiệm duy nhất. 0.25 Vậy Pt có nghiệm là: x = 2 − log 5 3 và x = 2 2 Giải hệ phương trình: 0,75 sin x + sin y = 2   ⇒ ( sin x + cos x ) + ( sin y + cos y ) = 2 2 ⇔ 0.25 cos x + cos y = 2    π  π cos x −  = 1  π  π  ...