Đề thi thử Đại học môn Toán năm 2012 (Đề số 9)
Số trang: 1
Loại file: pdf
Dung lượng: 54.19 KB
Lượt xem: 7
Lượt tải: 0
Xem trước 1 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
"Đề thi thử Đại học môn Toán năm 2012 (Đề số 9)" gồm 2 phần: phần chung có 5 câu hỏi bài tập ứng với thang điểm 7, phần riêng được chọn giữa chương trình chuẩn hoặc chương trình nâng cao ứng với thang điểm 3. Thời gian làm bài trong vòng 180 phút. Mời các bạn cùng tham khảo và thử sức mình với đề thi này nhé.
Nội dung trích xuất từ tài liệu:
Đề thi thử Đại học môn Toán năm 2012 (Đề số 9)DIỄN ĐÀN BOXMATH.VNĐỀ SỐ: 09ĐỀ THI THỬ ĐẠI HỌC NĂM 2012 Môn: TOÁN Thời gian làm bài: 180 phútI. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7 điểm) Câu I. (2 điểm) Cho hàm số y = x3 − 3x 2 + 2 (C ) 1. Khảo sát và vẽ đồ thị hàm số (C ) 2. Tìm tất cả các giá trị của k để trên đồ thị hàm số (C ) tồn tại đúng hai tiếp tuyến có cùng hệ số góc k đồng thời đường thẳng đi qua hai tiếp điểm cắt các trục tọa độ Ox , Oy lần lượt tại A vàB sao cho AB ≥ 5 Câu II. (2 điểm)1. Giải phương trình: 3 tan 2 x +3 ( tan x + 1) cos x17π − 4 2.sin x − 4 =1 2. Giải bất phương trình: 25 x 4 + 5 x 2 + 9 x( x 2 + 1) 9 x 2 − 4 − 2 ≥ 0xdx x3 + 1 0 Câu IV.(1 điểm) Cho hình chóp tam giác đều SABC có khoảng cách từ A đến mặt phẳng ( SBC ) bằng a và góc tạo bởi AB và mặt phẳng ( SBC ) bằng 300 . Gọi M là trung điểm của BC , N là trung điểm của SM . Tính thể tích khối chóp SABC và tính khoảng cách giữa hai đường thẳng SA, BN theo a.Câu III. (1 điểm) Tính tích phân: I = ∫2 2 2 x + y − z + xy − yz − xz = 1 Câu V. (1 điểm)Cho các số thực x, y, z thỏa mãn điều kiện: 2 2 y + z + yz = 2 Tìm giá trị lớn nhất, giá trị nhỏ nhất của P = x 2 + y 2 + z 2 II. PHẦN RIÊNG (3 điểm) Thí sinh chỉ được làm một trong hai phần 1.Theo chương trình Chuẩn Câu VI.a (2 điểm) 1. Trong mặt phẳng tọa độ Oxy cho tam giác ABC có phương trình đường phân giác trong góc A là AD : x + y + 2 = 0 , đường cao xuất phát từ đỉnh B là BH : 2 x − y + 1 = 0 . Cạnh AB đi qua M (1;1) . Biết 27 . Tìm tọa độ của các đỉnh tam giác ABC diện tích của tam giác là 2 2. Trong không gian với hệ trục tọa độ Oxyz cho 2 mặt phẳng ( P) : x + mz − m = 0, (Q) : (1 − m) x − my = 0 (m là tham số thực và m ≠ 0) . Viết phương trình đường thẳng ∆ là giao tuyến của hai mặt phẳng ( P), (Q ) biết khoảng cách từ điểm I (2;1; −1) đến đường thẳng ∆ là lớn nhất. Câu VII.a (1 điểm) Cho số phức z thỏa mãn điều kiện 11z10 + 10iz 9 + 10iz − 11 = 0 . Chứng minh rằng z = 1. 2. Theo chương trình Nâng cao Câu VI.b (2 điểm) 1. Trong mặt phẳng tọa độ Oxy cho đường thẳng ( d ) : x − y + 1 = 0 và đường tròn (T ) : x 2 + y 2 − 2 x + 4 y − 4 = 0 . Tìm điểm M thuộc đường thẳng (d ) sao cho qua M ta kẻ được các tiếp tuyến MA, MB đến đường tròn (T ) ,( A, B là các tiếp điểm) đồng thời khoảng cách từ điểm 1 N ;1 đến đường thẳng đi qua AB là lớn nhất 2 2. Trong không gian với hệ trục tọa độ Oxyz cho A(1; 0; 2), B(3;1; 4), C (3; −2;1) . Gọi ∆ là đường thẳng qua A vuông góc với mặt phẳng ( ABC ) . Tìm điểm S thuộc đường thẳng ∆ sao cho mặt cầu ngoại tiếp tứ diện SABC có bán kính bằng3 11 2 z1 z2 z3 + + = 1. z2 z3 z1Câu VII.b (1 điểm) Cho các số phức z1 , z2 , z3 thỏa mãn: z1 = z2 = z3 = 1 và Tính giá trị của biểu thức A = 3z1 + 12 z2 + 2011z3 ---------- Hết ----------
Nội dung trích xuất từ tài liệu:
Đề thi thử Đại học môn Toán năm 2012 (Đề số 9)DIỄN ĐÀN BOXMATH.VNĐỀ SỐ: 09ĐỀ THI THỬ ĐẠI HỌC NĂM 2012 Môn: TOÁN Thời gian làm bài: 180 phútI. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7 điểm) Câu I. (2 điểm) Cho hàm số y = x3 − 3x 2 + 2 (C ) 1. Khảo sát và vẽ đồ thị hàm số (C ) 2. Tìm tất cả các giá trị của k để trên đồ thị hàm số (C ) tồn tại đúng hai tiếp tuyến có cùng hệ số góc k đồng thời đường thẳng đi qua hai tiếp điểm cắt các trục tọa độ Ox , Oy lần lượt tại A vàB sao cho AB ≥ 5 Câu II. (2 điểm)1. Giải phương trình: 3 tan 2 x +3 ( tan x + 1) cos x17π − 4 2.sin x − 4 =1 2. Giải bất phương trình: 25 x 4 + 5 x 2 + 9 x( x 2 + 1) 9 x 2 − 4 − 2 ≥ 0xdx x3 + 1 0 Câu IV.(1 điểm) Cho hình chóp tam giác đều SABC có khoảng cách từ A đến mặt phẳng ( SBC ) bằng a và góc tạo bởi AB và mặt phẳng ( SBC ) bằng 300 . Gọi M là trung điểm của BC , N là trung điểm của SM . Tính thể tích khối chóp SABC và tính khoảng cách giữa hai đường thẳng SA, BN theo a.Câu III. (1 điểm) Tính tích phân: I = ∫2 2 2 x + y − z + xy − yz − xz = 1 Câu V. (1 điểm)Cho các số thực x, y, z thỏa mãn điều kiện: 2 2 y + z + yz = 2 Tìm giá trị lớn nhất, giá trị nhỏ nhất của P = x 2 + y 2 + z 2 II. PHẦN RIÊNG (3 điểm) Thí sinh chỉ được làm một trong hai phần 1.Theo chương trình Chuẩn Câu VI.a (2 điểm) 1. Trong mặt phẳng tọa độ Oxy cho tam giác ABC có phương trình đường phân giác trong góc A là AD : x + y + 2 = 0 , đường cao xuất phát từ đỉnh B là BH : 2 x − y + 1 = 0 . Cạnh AB đi qua M (1;1) . Biết 27 . Tìm tọa độ của các đỉnh tam giác ABC diện tích của tam giác là 2 2. Trong không gian với hệ trục tọa độ Oxyz cho 2 mặt phẳng ( P) : x + mz − m = 0, (Q) : (1 − m) x − my = 0 (m là tham số thực và m ≠ 0) . Viết phương trình đường thẳng ∆ là giao tuyến của hai mặt phẳng ( P), (Q ) biết khoảng cách từ điểm I (2;1; −1) đến đường thẳng ∆ là lớn nhất. Câu VII.a (1 điểm) Cho số phức z thỏa mãn điều kiện 11z10 + 10iz 9 + 10iz − 11 = 0 . Chứng minh rằng z = 1. 2. Theo chương trình Nâng cao Câu VI.b (2 điểm) 1. Trong mặt phẳng tọa độ Oxy cho đường thẳng ( d ) : x − y + 1 = 0 và đường tròn (T ) : x 2 + y 2 − 2 x + 4 y − 4 = 0 . Tìm điểm M thuộc đường thẳng (d ) sao cho qua M ta kẻ được các tiếp tuyến MA, MB đến đường tròn (T ) ,( A, B là các tiếp điểm) đồng thời khoảng cách từ điểm 1 N ;1 đến đường thẳng đi qua AB là lớn nhất 2 2. Trong không gian với hệ trục tọa độ Oxyz cho A(1; 0; 2), B(3;1; 4), C (3; −2;1) . Gọi ∆ là đường thẳng qua A vuông góc với mặt phẳng ( ABC ) . Tìm điểm S thuộc đường thẳng ∆ sao cho mặt cầu ngoại tiếp tứ diện SABC có bán kính bằng3 11 2 z1 z2 z3 + + = 1. z2 z3 z1Câu VII.b (1 điểm) Cho các số phức z1 , z2 , z3 thỏa mãn: z1 = z2 = z3 = 1 và Tính giá trị của biểu thức A = 3z1 + 12 z2 + 2011z3 ---------- Hết ----------
Tìm kiếm theo từ khóa liên quan:
Bài tập Toán Đề thi thử Đại học môn Toán năm 2012 Đề thi thử Đại học môn Toán Đề thi thử Đại học Đề thi thử Đại học khối A Ôn thi Đại học môn ToánTài liệu có liên quan:
-
Đề thi khảo sát chất lượng hóa học 12 dự thi đại học 2014 - Trường THPT chuyên ĐH KHTN - Mã đề 179
10 trang 138 0 0 -
14 trang 128 0 0
-
Đề thi thử đại học môn Vật lý - Khối A, A1, V: Đề số 7
5 trang 104 1 0 -
Đề thi Olympic Toán sinh viên Trường Đại học Bách Khoa Hà Nội- Môn GIẢI TÍCH
1 trang 66 1 0 -
thực hành giải toán tiểu học và chuyên đề bồi dưỡng học sinh giỏi: phần 2
50 trang 56 0 0 -
150 đề thi thử đại học môn Toán
155 trang 54 0 0 -
GIÁO TRÌNH MATLAB (phụ lục lệnh và hàm)
8 trang 53 0 0 -
9 trang 51 0 0
-
Ôn thi Toán, tiếng Việt - Lớp 5
5 trang 50 0 0 -
144 trang 50 1 0