Danh mục tài liệu

Đề thi thử ĐH lần 1 môn Toán khối A, B (2013 -2014) THPT Thuận Thành số 3 (Kèm Đ.án)

Số trang: 5      Loại file: pdf      Dung lượng: 269.15 KB      Lượt xem: 12      Lượt tải: 0    
Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Nhằm phục vụ quá trình học tập, giảng dạy của giáo viên và học sinh đề thi thử Đại học lần 1 môn Toán khối A, B năm 2013-2014 của Sở Giáo dục và Đào tạo Bắc Ninh trường THPT Thuận Thành số 1 sẽ là tư liệu ôn tập hữu ích, giúp các bạn hệ thống lại kiến thức đã học. Mời các bạn cùng tham khảo để chuẩn bị tốt cho kì thi sắp tới.
Nội dung trích xuất từ tài liệu:
Đề thi thử ĐH lần 1 môn Toán khối A, B (2013 -2014) THPT Thuận Thành số 3 (Kèm Đ.án) www.VNMATH.com SỞ GD&ĐT BẮC NINH ĐỀ THI THỬ ĐẠI HỌC LẦN 1 NĂM 2013 – 2013 TRƯỜNG THPT THUẬN THÀNH SỐ 1 Môn : TOÁN, Khối A, B NGÀY 05/01/2014 Thời gian làm bài: 180 phút (không kể thời gian giao đề) PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7,0 điểm) 2x  1 Câu I (2,0 điểm). Cho hàm số: y  x 1 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 1 2. Tìm m để đường thẳng y= x  m cắt đồ thị (C) tại hai điểm A,B sao cho KA=KB với K(2;0). 2 Câu II (2,0 điểm). x x x x  1. Giải phương trình: 2 2 (sin 3  cos 3 ) cos  (2  sin x) cos   . 2 2 2 2 4 27 2 2 2. Giải phương trình : x  1  x 2  2 x  x x 8 x 2e2 x  3xe x  e x  1 Câu III (1,0 điểm). Tính: I=.  dx xe x  1 Câu IV (1,0 điểm). Cho hình chóp S.ABCD có đáy ABCD là hình thoi,hai đường chéo AC = 2 3a , BD = 2a và cắt nhautại O, hai mặt phẳng (SAC) và (SBD) cùng vuông góc với mặt phẳng (ABCD). Biết khoảng cách từ điểm O a 3đến mặt phẳng (SAB) bằng , tính thể tích khối chóp S.ABCD theo a, và góc giữa 2 mặt phẳng (SAB) 4với (SBD). Câu V:(1,0 điểm). Cho x,y,z > 0 thỏa mãn: x 2  y 2  xz  yz  2 xy .  1 1 1  Tìm giá trị nhỏ nhất của P   x 4  y 4  z 4   4  4  4   4x 4 y z  PHẦN RIÊNG (3,0 điểm). Thí sinh chỉ được làm một trong hai phần (phần A hoặc B) A. Theo chương trình Chuẩn Câu VI.a (2,0 điểm). 1. Trong mặt phẳng tọa độ Oxy cho 2 đường thẳng có phương trình lần lượt là d 1: 3x-4y-24=0,d2: 2x-y-6=0. Viết phương trình đường tròn(C ) tiếp xúc với d1 tại A và cắt d 2 tại B, C sao cho BC = 4 5 và sin  = 2 A . Biết tâm I của đường tròn (C ) có các tọa độ đều dương. 5 log 2 y  log 4  xy  2   2. Giải hệ phương trình:  2 log 9 x  log 3  x  y   1  Câu VII.a (1,0 điểm). Từ các chữ số 1,2,3,4,5,6 lập các số có 4 chữ số khác nhau. Lấy ngẫu nhiên một số trong các số đượclập, tính xác suất để số được lấy có 2 chữ số chẵn, 2 chữ số lẻ. B. Theo chương trình Nâng cao Câu VI.b (2,0 điểm). 1. Trong mặt phẳng tọa độ Oxy cho đường tròn C  : x 2  y 2  2 .Viết phương trình tiếp tuyến củađường tròn (C) biết tiếp tuyến đó cắt các tia Ox, Oy lần lượt tại A và B sao cho tam giác OAB có diện tích nhỏnhất. 2. Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC có A(0;0;2), B(0;1;0), C(-2;0;0). Gọi H làtrực tâm của tam giác ABC. Viết phương trình mặt cầu tâm H tiếp xúc với Oy. log2 x 2 Câu VII.b (1,0 điểm)Giải bất phương trình 2 2  4log2 x  20  0 .……….Hết……… Họ và tên thí sinh...................................................................., Số báo danh..................................................... www.VNMATH.com ĐÁP ÁN VÀ THANG ĐIỂM Câu Nội dung Điểm -ýI.1 *Tập xác định : D   1 0.25 1 Tính y   0 x  D (x  1)2 Hàm số nghịch biến trên các khoảng (;1) và (1;  ) *Hàm số không có cực trị 0.25 Giới hạn lim y   lim y   x 1 x 1 lim y  2 lim y  2 x  x  Đồ thị có tiệm cận đứng :x=1 , tiệm ...