Đề Thi Thử ĐH Môn TOÁN AB - THPT Hiệp Đức - Quảng Nam [2009 - 2010]
Số trang: 4
Loại file: pdf
Dung lượng: 162.15 KB
Lượt xem: 14
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Tài liệu " Đề Thi Thử ĐH Môn TOÁN AB - THPT Hiệp Đức - Quảng Nam [2009 - 2010] " giúp các em học sinh có tài liệu ôn tập, luyện tập nhằm nắm vững được những kiến thức, kĩ năng cơ bản, đồng thời vận dụng kiến thức để giải các đề thi một cách thuận lợi và tự kiểm tra đánh giá kết quả học tập của mình.Chúc cácn em học tốt.
Nội dung trích xuất từ tài liệu:
Đề Thi Thử ĐH Môn TOÁN AB - THPT Hiệp Đức - Quảng Nam [2009 - 2010] S GD VÀ ðT QU NG NAM ð THI TH ð I H C NĂM 2009-2010 TRƯ NG THPT HI P ð C Môn thi: TOÁN – Kh i A, B Giáo viên: Ph m Văn Hùng Th i gian : 180 phút, không k th i gian giao ñI. PH N CHUNG CHO T T C THÍ SINH (7,0 ñi m)Câu I:(2,0 ñi m) Cho hàm s y = x 3 − (3 x − 1) m (C ) v i m là tham s . 1. Kh o sát s bi n thiên và v ñ th c a hàm s (C) khi m = 1 . 2. Tìm các gíá tr c a m ñ ñ th c a hàm s (C) có hai ñi m c c tr và ch ng t r ng hai ñi m c c tr này v hai phía c a tr c tung.Câu II:(2,0 ñi m) 17π 1. Gi i phương trình: 8cos 3 x + 6 2 sin 3 2 x + 3 2 cos( − 4 x).cos 2 x = 16cos x . 2 1 dx 2. Tính tích phân : I = ∫ ( e x + 1)( x 2 + 1) . −1Câu III:(2,0 ñi m) x 1. Tìm các giá tr c a tham s m ñ phương trình: m + e = 4 e 2 x + 1 có nghi m th c . 2 1 1 1 2. Ch ng minh: ( x + y + z ) + + ≤ 12 v i m i s th c x , y , z thu c ño n [1;3] . x y z Câu IV:(1,0 ñi m) Cho hình chóp S.ABC có chân ñư ng cao là H trùng v i tâm c a ñư ngtròn n i ti p tam giác ABC và AB = AC = 5a , BC = 6a . Góc gi a m t bên (SBC) v i m t ñáylà 600 .Tính theo a th tích và di n tích xung quanh c a kh i chóp S.ABC.II. PH N RIÊNG (3,0 ñi m). Thí sinh ch ñư c làm m t trong hai ph n: A ho c B.A. Theo chương trình chu nCâu Va:(1,0 ñi m) Trong m t ph ng t a ñ (Oxy) , cho tam giác ABC vuông cân t i A v i ( ) A ( 2;0 ) và G 1 ; 3 là tr ng tâm . Tính bán kính ñư ng tròn n i ti p tam giác ABC.Câu VI.a:(2,0 ñi m) 1. Gi i phương trình: log 3 ( 4.16 x + 12 x ) = 2 x + 1 . 2. Tìm giá tr nh nh t c a hàm s y = ( x − 1) ln x .B. Theo chương trình nâng caoCâu Vb:(1,0 ñi m) Trong m t ph ng t a ñ (Oxy) , cho tam giác ABC v i A ( 0 ; 1) và phương trình hai ñư ng trung tuy n c a tam giác ABC qua hai ñ nh B , C l n lư t là − 2x + y +1 = 0 và x + 3 y − 1 = 0 . Tìm t a ñ hai ñi m B và C.Câu VI.b:(2,0 ñi m) log x +1 log x − 2 1. Gi i phương trình: 2 3 +2 3 = x. ln ( 2 − x ) 2. Tìm gi i h n: lim . x→1 x 2 − 1 -----H t----- Thí sinh không ñư c s d ng tài li u. Giám th coi thi không gi i thích gì thêm. http://ebook.here.vn - T i ebook, Tài li u h c t p mi n phí S GIÁO D C VÀ ðÀO T O ðÁP ÁN QU NG NAM ð THI TH ð I H C CAO ð NG NĂM 2010 TRƯ NG THPT HI P ð C Môn thi: TOÁN – Kh i A, B Câu Ý N I DUNG ði mCâu I Ý1 Khi m =1 → y = x3 − 3 x + 1 . T p xác ñ nh D=R . 0,25 ñ(2,0ñ) (1,0 ñ) Gi i h n: lim y = −∞ ; lim y = +∞ . x →−∞ x →+∞ 0,25 ñ y’= 3x2 – 3 ; y’=0 ↔ x = ±1 . B ng bi n thiên . Hàm s ñ ng bi n trên kho ng ( −∞ ; − 1) , (1; + ∞ ) và ngh ch bi n 0,25 ñ trên kho ng ( −1;1) . Hàm s ñ t Cð t i x = -1 ; yCð = 3 và ñ t CT t i x = 1 ; yCT = -1 . ði m ñ c bi t: ðT c t Oy t i (0 ; 1) và qua (-2 ; -1) ; (2 ; 3). 0,25 ñ ð th ( không c n tìm ñi m u n) . Ý2 y’ = 0 ↔ 3x2 – 3m = 0 ; ∆ = 9m . 0,25 ñ (1,0 ñ) m ≤ 0 : y’ không ñ i d u → hàm s không có c c tr . 0,25 ñ m > 0 : y’ ñ i d u qua 2 nghi m c a y’=0 → hàm s có 2 c c tr . KL: m > 0 . ...
Nội dung trích xuất từ tài liệu:
Đề Thi Thử ĐH Môn TOÁN AB - THPT Hiệp Đức - Quảng Nam [2009 - 2010] S GD VÀ ðT QU NG NAM ð THI TH ð I H C NĂM 2009-2010 TRƯ NG THPT HI P ð C Môn thi: TOÁN – Kh i A, B Giáo viên: Ph m Văn Hùng Th i gian : 180 phút, không k th i gian giao ñI. PH N CHUNG CHO T T C THÍ SINH (7,0 ñi m)Câu I:(2,0 ñi m) Cho hàm s y = x 3 − (3 x − 1) m (C ) v i m là tham s . 1. Kh o sát s bi n thiên và v ñ th c a hàm s (C) khi m = 1 . 2. Tìm các gíá tr c a m ñ ñ th c a hàm s (C) có hai ñi m c c tr và ch ng t r ng hai ñi m c c tr này v hai phía c a tr c tung.Câu II:(2,0 ñi m) 17π 1. Gi i phương trình: 8cos 3 x + 6 2 sin 3 2 x + 3 2 cos( − 4 x).cos 2 x = 16cos x . 2 1 dx 2. Tính tích phân : I = ∫ ( e x + 1)( x 2 + 1) . −1Câu III:(2,0 ñi m) x 1. Tìm các giá tr c a tham s m ñ phương trình: m + e = 4 e 2 x + 1 có nghi m th c . 2 1 1 1 2. Ch ng minh: ( x + y + z ) + + ≤ 12 v i m i s th c x , y , z thu c ño n [1;3] . x y z Câu IV:(1,0 ñi m) Cho hình chóp S.ABC có chân ñư ng cao là H trùng v i tâm c a ñư ngtròn n i ti p tam giác ABC và AB = AC = 5a , BC = 6a . Góc gi a m t bên (SBC) v i m t ñáylà 600 .Tính theo a th tích và di n tích xung quanh c a kh i chóp S.ABC.II. PH N RIÊNG (3,0 ñi m). Thí sinh ch ñư c làm m t trong hai ph n: A ho c B.A. Theo chương trình chu nCâu Va:(1,0 ñi m) Trong m t ph ng t a ñ (Oxy) , cho tam giác ABC vuông cân t i A v i ( ) A ( 2;0 ) và G 1 ; 3 là tr ng tâm . Tính bán kính ñư ng tròn n i ti p tam giác ABC.Câu VI.a:(2,0 ñi m) 1. Gi i phương trình: log 3 ( 4.16 x + 12 x ) = 2 x + 1 . 2. Tìm giá tr nh nh t c a hàm s y = ( x − 1) ln x .B. Theo chương trình nâng caoCâu Vb:(1,0 ñi m) Trong m t ph ng t a ñ (Oxy) , cho tam giác ABC v i A ( 0 ; 1) và phương trình hai ñư ng trung tuy n c a tam giác ABC qua hai ñ nh B , C l n lư t là − 2x + y +1 = 0 và x + 3 y − 1 = 0 . Tìm t a ñ hai ñi m B và C.Câu VI.b:(2,0 ñi m) log x +1 log x − 2 1. Gi i phương trình: 2 3 +2 3 = x. ln ( 2 − x ) 2. Tìm gi i h n: lim . x→1 x 2 − 1 -----H t----- Thí sinh không ñư c s d ng tài li u. Giám th coi thi không gi i thích gì thêm. http://ebook.here.vn - T i ebook, Tài li u h c t p mi n phí S GIÁO D C VÀ ðÀO T O ðÁP ÁN QU NG NAM ð THI TH ð I H C CAO ð NG NĂM 2010 TRƯ NG THPT HI P ð C Môn thi: TOÁN – Kh i A, B Câu Ý N I DUNG ði mCâu I Ý1 Khi m =1 → y = x3 − 3 x + 1 . T p xác ñ nh D=R . 0,25 ñ(2,0ñ) (1,0 ñ) Gi i h n: lim y = −∞ ; lim y = +∞ . x →−∞ x →+∞ 0,25 ñ y’= 3x2 – 3 ; y’=0 ↔ x = ±1 . B ng bi n thiên . Hàm s ñ ng bi n trên kho ng ( −∞ ; − 1) , (1; + ∞ ) và ngh ch bi n 0,25 ñ trên kho ng ( −1;1) . Hàm s ñ t Cð t i x = -1 ; yCð = 3 và ñ t CT t i x = 1 ; yCT = -1 . ði m ñ c bi t: ðT c t Oy t i (0 ; 1) và qua (-2 ; -1) ; (2 ; 3). 0,25 ñ ð th ( không c n tìm ñi m u n) . Ý2 y’ = 0 ↔ 3x2 – 3m = 0 ; ∆ = 9m . 0,25 ñ (1,0 ñ) m ≤ 0 : y’ không ñ i d u → hàm s không có c c tr . 0,25 ñ m > 0 : y’ ñ i d u qua 2 nghi m c a y’=0 → hàm s có 2 c c tr . KL: m > 0 . ...
Tìm kiếm theo từ khóa liên quan:
giải nhanh toán toán chuyên đề thi đại học 2010 bộ đề toán luyện thi đại học toán nâng caoTài liệu có liên quan:
-
Bài giảng chuyên đề luyện thi đại học Vật lý – Chương 9 (Chủ đề 1): Đại cương về hạt nhân nguyên tử
0 trang 123 0 0 -
0 trang 94 0 0
-
Môn Toán 10-11-12 và các đề thi trắc nghiệm: Phần 1
107 trang 69 0 0 -
Bộ 14 đề thi đại học có đáp án 2010
153 trang 57 0 0 -
Luyện thi đại học môn Vật lý mã đề 174_01
16 trang 51 0 0 -
Luyện thi đại học môn Vật lý - Mã đề 175_23
14 trang 47 0 0 -
Đề thi tuyển sinh lớp 10 chuyên Quốc học Huế 2007
4 trang 46 0 0 -
9 trang 45 0 0
-
Luyện thi đại học môn Vật lý - Mã đề 175_07
8 trang 44 0 0 -
Luyện thi đại học môn Vật lý mã đề 174_02
10 trang 43 0 0