Tham khảo tài liệu giải phương trình lượng giác 07.05 (bài tập và hướng dẫn giải), tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Nội dung trích xuất từ tài liệu:
Giải phương trình lượng giác 07.05 (Bài tập và hướng dẫn giải) TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 07 tháng 05 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 BTVN NGÀY 07-05 Giải các phương trình lượng giác sau: 1/ Sinx − cos x + 7 sin 2 x = 1 π 2 / Sin 2 x + 2 sin x − = 1 4 3 / Tìm m cho PT : Sin 2 x + 4(cos x − s inx) = m có ng 0 4 / Cos2 x + 5 = 2(2 − cos x)(s inx − cos x) 5 / Sin3 x + cos3 x = 2(sin 5 x + cos5 x) ………………….Hết………………… BT Viên môn Toán hocmai.vn Trịnh Hào QuangHocmai.vn – Ngôi trường chung của học trò Việt 1 TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 28 tháng 02 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 HDG CÁC BTVN• BTVN NGÀY 05-05: 1/ 4sin 3 x − 1 = 3sin x − 3cos3x 1 3 1 ⇔ sin 3 x − 3cos3x = −1 ⇔ sin 3x − cos3x = − 2 2 2 π k 2π x= + π π 18 3 ⇔ sin 3x − = sin − ⇔ 3 6 x = π + k 2π 2 3 2 / sin 3 x + ( 3 − 2)cos3 x = 1 3x 2t ( 3 − 2)(1 − t 2 ) Coi : t = tan ⇒ + = 1 ⇔ ( 3 − 1)t 2 − 2t + (3 − 3) = 0 2 1+ t 2 1+ t 2 3x π k 2π tan =1 x= + t = 1 2 6 3 ⇔ ⇔ ⇔ t = 3 tan 3 x = 3 x = 2π + k 2π 2 9 3 3 / 4sin 3 x + 3cos3 x − 3sin x − sin 2 x cos x = 0(1) * Xét sinx = 0 ⇒ 3cos3 x = ±3 ≠ 0 (1) ⇔ 4 + 3cot 3 x − 3(cot 2 x + 1) − cot x = 0 cot x = 1 π x = + kπ 1 4 ⇔ cot x = − ⇔ 3 x = ± π + kπ 1 3 cot x = 3 Page 2 of 10 TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 28 tháng 02 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-4084 / 2sin 5 x + 3cos3 x + sin 3 x = 0 3 1 3cos3x + sin 3 x = −2sin 5 x ⇔ − cos3 x − sin 3 x = sin 5 x 2 2 5π π⇔ cos + 3x = sin 5 x = cos( − 5 x) 6 2 5π π π kπ 6 + 3 x = − 5 x + k 2π x=− + 2 24 4⇔ ⇔ 5π + 3 x = 5 x − π + k 2π x = 2π − kπ 6 2 35 / 2sin 4 x + 3cos 2 x + 16sin 3 x cos x − 5 = 0⇔ 2sin 4 x + 3cos 2 x + 8sin 2 x.sin 2 x − 5 = 0 1 − cos2 x ⇔ 2sin 4 x + 3cos 2 x + 8sin 2 x. −5 = 0 2 ⇔ 2sin 4 x + 3cos 2 x + 4sin 2 x − 2sin 4 x − 5 = 0 3 4⇔ 3cos 2 x + 4sin 2 x = 5 ⇔ cos 2 x + sin 2 x = 1 5 5 3 cos α = α 5⇔ Cos(2 x − α ) = 1 ⇒ x = + kπ ;(k ∈ ¢ ); 2 sin α = 4 5 Page 3 of 10 TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 28 tháng 02 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408• BTVN NGÀY 06-05 1/ Sinx − 4sin 3 x + cos x = 0(1) ⇔ Nê u : cos x = 0 ⇒ Sinx − 4sin 3 x = ±3 ≠ 0 (1) ⇔ t anx(1 + tan 2 x) − 4 tan 3 x + 1 + tan 2 x = 0 t = t anx t = t anx π ⇔ 3 2 ⇔ ⇔ t anx = 1 ⇔ x = + kπ ( t − 1) ( 3t + 2t + 1) = 0 2 −3t + t + t + 1 = 0 4 2 / tan x sin 2 x − 2sin 2 x = 3 ( cos2 x + sin x cos x ) Chia VT , VP cho cos 2 x ta có : tan 3 x − 2 tan 2 x=3 ( cos x − sin 2 2 x + sin x cos x ) cos 2 x t anx = t ⇔ tan 3 x − 2 tan 2 x = 3 ( 1 − tan 2 x + t anx ) ⇔ 3 2 t + t − 3t − 3 = 0 π t anx = t x = − + kπ ...
Giải phương trình lượng giác 07.05 (Bài tập và hướng dẫn giải)
Số trang: 10
Loại file: doc
Dung lượng: 470.50 KB
Lượt xem: 4
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Tìm kiếm theo từ khóa liên quan:
ôn thi đại học 2010 giáo dục đào tạo ôn thi đại học - cao đẳng ôn thi tốt nghiệp tài liệu luyện thi đại học 2010 đề thi thử đại học 2010 thử sức đại học 2010 đáp án đề thi đại học 2010 luyện thi đại học cấp tốcTài liệu có liên quan:
-
BÀI THUYẾT TRÌNH CÔNG TY CỔ PHẦN
11 trang 232 0 0 -
CHẨN ĐOÁN XQUANG GAN VÀ ĐƯỜNG MẬT
11 trang 217 0 0 -
Giáo trình Nguyên tắc phương pháp thẩm định giá (phần 1)
9 trang 174 0 0 -
14 trang 127 0 0
-
Tiểu luận triết học - Việt Nam trong xu thế hội nhập và phát triển dưới con mắt triết học
38 trang 100 0 0 -
Gíao trình giao dịch đàm phán kinh doanh. Phần 1
100 trang 95 0 0 -
Đề thi môn tài chính doanh nghiệp
5 trang 85 1 0 -
14 trang 82 0 0
-
Gíao trình giao dịch đàm phán kinh doanh. Phần 2
102 trang 73 0 0 -
Đề cương môn học Phân tích định lượng trong kinh doanh
7 trang 58 0 0