Danh mục tài liệu

Giáo trình hướng dẫn phân tích lý thuyết trường và phương thức sử dụng toán tử hamilton p4

Số trang: 5      Loại file: pdf      Dung lượng: 109.72 KB      Lượt xem: 8      Lượt tải: 0    
Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Tìm nghiệm của b i toán DE1a dạng tách biến u(r, ϕ) = V(r)Φ(ϕ) Thế v o phương trình (8.6.1) nhận được hệ phương trình vi phân Φ”(ϕ) + λΦ(ϕ) = 0 (8.6.3) 2 r V”(r) + rV’(r) - λV(r) = 0, với λ ∈ 3 (8.6.4) Phương trình (8.6.3) có họ nghiệm riêng trực giao, tuần ho n chu kỳ T = 2π Φk(x) = Akcoskϕ + Bksinkϕ
Nội dung trích xuất từ tài liệu:
Giáo trình hướng dẫn phân tích lý thuyết trường và phương thức sử dụng toán tử hamilton p4 h a n g e Vi h a n g e Vi XC XC e e F- F- w wPD PD er er ! ! W W O O N N y y bu bu to to k k lic lic C Cw w m m w ww w o o .c .c Ch−¬ng 7. Ph−¬ng Tr×nh TruyÒn Sãng .d o .d o c u -tr a c k c u -tr a c k B i to¸n Diriclet (DE) B i to¸n Neumann (NE) T×m h m u ∈ C(D, 3) tho¶ m n T×m h m u ∈ C(D, 3) tho¶ m n ph−¬ng tr×nh Laplace ph−¬ng tr×nh Laplace ∂2u ∂2u ∂2u ∂2u + = f(x, y) + = f(x, y) ∂x 2 ∂y 2 ∂x 2 ∂y 2 v ®iÒu kiÖn biªn v c¸c ®iÒu kiÖn biªn ∂u ρ ∂D = h(x, y) u∂D = g(x, y) u∂D = g(x, y), ∂n §4. B i to¸n Cauchy thuÇn nhÊt B i to¸n CH1a Cho c¸c miÒn D = 3, H = D × 3+ v h m h ∈ C(D, 3). T×m h m u ∈ C(H, 3) tho¶ m n ph−¬ng tr×nh truyÒn sãng ∂2u ∂2u = a2 2 víi (x, t) ∈ H0 (7.4.1) ...