Hàm số-ôn thi cấp tốc đại học 2009
Số trang: 149
Loại file: pdf
Dung lượng: 1.44 MB
Lượt xem: 15
Lượt tải: 0
Xem trước 10 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Tài liệu " Hàm số-ôn thi cấp tốc đại học 2009 " giúp các em học sinh có tài liệu ôn tập, luyện tập nhằm nắm vững được những kiến thức, kĩ năng cơ bản, đồng thời vận dụng kiến thức để giải các bài tập toán học một cách thuận lợi và tự kiểm tra đánh giá kết quả học tập của mình.Chúc các bạn học tốt
Nội dung trích xuất từ tài liệu:
Hàm số-ôn thi cấp tốc đại học 2009Nguy n Phú Khánh –Nguy n T t Thu các em thu n ti n trong vi c ôn luy n thi i h c và Cao ng năm 2009 . Chúng tôi g i t ng các em bàivi t nh mang tính t ng quát gi i tích hàm s l p 12 , cũng như m t s ng d ng c áo gi i quy t khátri t nh ng d ng toán t ng c p các l p h c dư i mà các em còn b ngõ . Tài li u ư c c p nhi u ch chuyên phù h p vi c ôn luy n thi c p t c chu n b kỳ thi i h c tháng 7/2009 .Trong quá trình biên so n ch c h n còn nhi u ch thi u sót khách quan, chúng tôi r t mong óng góp quýbáu c a các b n c gi g n xa , thư góp ý g i v email: phukhanh1009@gmail.com . Tài li u này còn ư clưu tr t i hai website : http://www.mathsvn.violet.vn và http://www.maths.vn .Nguy n Phú Khánh –Nguy n T t Thu Bài 1: TÍNH ƠN I U C A HÀM S 1.1 TÓM T T LÝ THUY T1. nh nghĩa :Gi s K là m t kho ng , m t o n ho c m t n a kho ng . Hàm s f xác nh trên K ư c g i là• ( ) ( ) ng bi n trên K n u v i m i x 1, x 2 ∈ K , x 1 < x 2 ⇒ f x 1 < f x 2 ;• Ngh ch bi n trên K n u v i m i x 1, x 2 ∈ K , x 1 < x 2 ⇒ f (x ) > f (x ) . 1 22. i u ki n c n hàm s ơn i u :Gi s hàm s f có o hàm trên kho ng I• N u hàm s f ( ) ng bi n trên kho ng I thì f x ≥ 0 v i m i x ∈ I .• N u hàm s f ngh ch bi n trên kho ng I thì f ( x ) ≤ 0 v i m i x ∈I .3. i u ki n hàm s ơn i u : nh lý 1 : nh lý v giá tr trung bình c a phép vi phân ( nh lý Lagrange): ( )N u hàm s f liên t c trên a;b và có o hàm trên kho ng a;b thì t n t i ít nh t m t i m c ∈ a;b sao ( ) () () ( )(cho f b − f a = f c b − a . ) nh lý 2 :Gi s I là m t kho ng ho c n a kho ng ho c m t o n , f là hàm s liên t c trên I và có o hàm t i m i i m trong c a I ( t c là i m thu c I nhưng không ph i u mút c a I ) .Khi ó : ( )• N u f x > 0 v i m i x ∈ I thì hàm s f ng bi n trên kho ng I ;• N u f (x ) < 0 v i m i x ∈ I thì hàm s f ngh ch bi n trên kho ng I ;• N u f (x ) = 0 v i m i x ∈ I thì hàm s f không i trên kho ng I .Chú ý :• N u hàm s f liên t c trên a;b và có ( ) ( ) o hàm f x > 0 trên kho ng a;b thì hàm s f ng bi n trêna;b . • N u hàm s f liên t c trên a;b và có ( ) ( ) o hàm f x < 0 trên kho ng a;b thì hàm s f ngh ch bi ntrên a;b . • Ta có th m r ng nh lí trên như sau :Gi s hàm s f có o hàm trên kho ng I . N u f (x ) ≥ 0 v i ∀x ∈ I( ho c f (x ) ≤ 0 v i ∀x ∈ I ) và f (x ) = 0 t i m t s h u h n i m c a I thì hàm s f ng bi n (ho cngh ch bi n) trên I .Nguy n Phú Khánh –Nguy n T t Thu 1.2 D NG TOÁN THƯ NG G P.D ng 1 : Xét chi u bi n thiên c a hàm s . ( )Xét chi u bi n thiên c a hàm s y = f x ta th c hi n các bư c sau:• Tìm t p xác nh D c a hàm s .• Tính o hàm y = f x . ( )• Tìm các giá tr c a x thu c D ( ) ( ) f x = 0 ho c f x không xác nh( ta g i ó là i m t i h n hàm s ). ( )• Xét d u y = f x trên t ng kho ng x thu c D .• D a vào b ng xét d u và i u ki n suy ra kho ng ơn i u c a hàm s .Ví d 1 :Xét chi u bi n thiên c a các hàm s sau:1. y = − x 3 − 3x 2 + 24x + 262. y = x 3 − 3x 2 + 23. y = x 3 + 3x 2 + 3x + 2 Gi i:1. y = − x − 3x + 24x + 26 . 3 2Hàm s ã cho xác nh trên » .Ta có : y = −3x 2 − 6x + 24 x = −4y = 0 ⇔ −3x 2 − 6x + 24 = 0 ⇔ x = 2 B ng xét d u c a y x −∞ −4 2 +∞y − 0 + 0 − ( )y > 0, x ∈ −4;2 ⇒ y ng bi n trên kho ng ( −4;2 ) ,y > 0, x ∈ ( −∞; −4 ) , ( 2; +∞ ) ⇒ y ngh ch bi n trên các kho ng ( −∞; −4 ) , ( 2; +∞ ) .Ho c ta có th trình bày :Hàm s ã cho xác nh trên » .Ta có : y = −3x 2 − 6x + 24 ...
Nội dung trích xuất từ tài liệu:
Hàm số-ôn thi cấp tốc đại học 2009Nguy n Phú Khánh –Nguy n T t Thu các em thu n ti n trong vi c ôn luy n thi i h c và Cao ng năm 2009 . Chúng tôi g i t ng các em bàivi t nh mang tính t ng quát gi i tích hàm s l p 12 , cũng như m t s ng d ng c áo gi i quy t khátri t nh ng d ng toán t ng c p các l p h c dư i mà các em còn b ngõ . Tài li u ư c c p nhi u ch chuyên phù h p vi c ôn luy n thi c p t c chu n b kỳ thi i h c tháng 7/2009 .Trong quá trình biên so n ch c h n còn nhi u ch thi u sót khách quan, chúng tôi r t mong óng góp quýbáu c a các b n c gi g n xa , thư góp ý g i v email: phukhanh1009@gmail.com . Tài li u này còn ư clưu tr t i hai website : http://www.mathsvn.violet.vn và http://www.maths.vn .Nguy n Phú Khánh –Nguy n T t Thu Bài 1: TÍNH ƠN I U C A HÀM S 1.1 TÓM T T LÝ THUY T1. nh nghĩa :Gi s K là m t kho ng , m t o n ho c m t n a kho ng . Hàm s f xác nh trên K ư c g i là• ( ) ( ) ng bi n trên K n u v i m i x 1, x 2 ∈ K , x 1 < x 2 ⇒ f x 1 < f x 2 ;• Ngh ch bi n trên K n u v i m i x 1, x 2 ∈ K , x 1 < x 2 ⇒ f (x ) > f (x ) . 1 22. i u ki n c n hàm s ơn i u :Gi s hàm s f có o hàm trên kho ng I• N u hàm s f ( ) ng bi n trên kho ng I thì f x ≥ 0 v i m i x ∈ I .• N u hàm s f ngh ch bi n trên kho ng I thì f ( x ) ≤ 0 v i m i x ∈I .3. i u ki n hàm s ơn i u : nh lý 1 : nh lý v giá tr trung bình c a phép vi phân ( nh lý Lagrange): ( )N u hàm s f liên t c trên a;b và có o hàm trên kho ng a;b thì t n t i ít nh t m t i m c ∈ a;b sao ( ) () () ( )(cho f b − f a = f c b − a . ) nh lý 2 :Gi s I là m t kho ng ho c n a kho ng ho c m t o n , f là hàm s liên t c trên I và có o hàm t i m i i m trong c a I ( t c là i m thu c I nhưng không ph i u mút c a I ) .Khi ó : ( )• N u f x > 0 v i m i x ∈ I thì hàm s f ng bi n trên kho ng I ;• N u f (x ) < 0 v i m i x ∈ I thì hàm s f ngh ch bi n trên kho ng I ;• N u f (x ) = 0 v i m i x ∈ I thì hàm s f không i trên kho ng I .Chú ý :• N u hàm s f liên t c trên a;b và có ( ) ( ) o hàm f x > 0 trên kho ng a;b thì hàm s f ng bi n trêna;b . • N u hàm s f liên t c trên a;b và có ( ) ( ) o hàm f x < 0 trên kho ng a;b thì hàm s f ngh ch bi ntrên a;b . • Ta có th m r ng nh lí trên như sau :Gi s hàm s f có o hàm trên kho ng I . N u f (x ) ≥ 0 v i ∀x ∈ I( ho c f (x ) ≤ 0 v i ∀x ∈ I ) và f (x ) = 0 t i m t s h u h n i m c a I thì hàm s f ng bi n (ho cngh ch bi n) trên I .Nguy n Phú Khánh –Nguy n T t Thu 1.2 D NG TOÁN THƯ NG G P.D ng 1 : Xét chi u bi n thiên c a hàm s . ( )Xét chi u bi n thiên c a hàm s y = f x ta th c hi n các bư c sau:• Tìm t p xác nh D c a hàm s .• Tính o hàm y = f x . ( )• Tìm các giá tr c a x thu c D ( ) ( ) f x = 0 ho c f x không xác nh( ta g i ó là i m t i h n hàm s ). ( )• Xét d u y = f x trên t ng kho ng x thu c D .• D a vào b ng xét d u và i u ki n suy ra kho ng ơn i u c a hàm s .Ví d 1 :Xét chi u bi n thiên c a các hàm s sau:1. y = − x 3 − 3x 2 + 24x + 262. y = x 3 − 3x 2 + 23. y = x 3 + 3x 2 + 3x + 2 Gi i:1. y = − x − 3x + 24x + 26 . 3 2Hàm s ã cho xác nh trên » .Ta có : y = −3x 2 − 6x + 24 x = −4y = 0 ⇔ −3x 2 − 6x + 24 = 0 ⇔ x = 2 B ng xét d u c a y x −∞ −4 2 +∞y − 0 + 0 − ( )y > 0, x ∈ −4;2 ⇒ y ng bi n trên kho ng ( −4;2 ) ,y > 0, x ∈ ( −∞; −4 ) , ( 2; +∞ ) ⇒ y ngh ch bi n trên các kho ng ( −∞; −4 ) , ( 2; +∞ ) .Ho c ta có th trình bày :Hàm s ã cho xác nh trên » .Ta có : y = −3x 2 − 6x + 24 ...
Tìm kiếm theo từ khóa liên quan:
toán 12 luyện thi tốt nghiệp ôn thi đại học giải nhanh toán toán chuyên đề thi toánTài liệu có liên quan:
-
Kiểm tra định kì học kì II năm học 2014–2015 môn Toán lớp 4 - Trường TH Thái Sanh Hạnh
3 trang 119 0 0 -
800 Câu hỏi trắc nghiệm Vật lý luyện thi Đại học hay và khó
97 trang 72 0 0 -
Đề thi và đáp án môn: Toán cao cấp A1
3 trang 68 0 0 -
Đề thi Olympic Toán sinh viên Trường Đại học Bách Khoa Hà Nội- Môn GIẢI TÍCH
1 trang 66 1 0 -
CHỨNH MINH BA ĐIỂM THẲNG HÀNG NHỜ SỬ DỤNG ĐỊNH LÝ THALES
4 trang 60 0 0 -
Tóm tắt lý thuyết hóa vô cơ lớp 12
9 trang 51 0 0 -
144 trang 50 1 0
-
Đề thi thử THPT Quốc gia 2015 lần 1 môn Toán
5 trang 44 0 0 -
6 trang 41 0 0
-
150 CÂU HỎI VÀ BÀI TẬP ÔN THI ĐH-CĐ
12 trang 41 0 0