Danh mục

Tóm tắt công thức Xác Suất - Thống Kê

Số trang: 16      Loại file: pdf      Dung lượng: 277.96 KB      Lượt xem: 114      Lượt tải: 0    
Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Tài liệu Tóm tắt công thức Xác Suất - Thống Kê nhằm giới thiệu các bạn các công thức toán xác suất và thống kê, tài liệu giúp các bạn cũng cố kiến thức và hệ thống lại công thức cơ sở quan trọng để làm bài tập toán xác suất thống kê.
Nội dung trích xuất từ tài liệu:
Tóm tắt công thức Xác Suất - Thống Kê -1- Tóm tắt công thức Tóm tắt công thức Xác Suất - Thống KêI. Phần Xác Suất 1. Xác suất cổ điển  Công thức cộng xác suất: P(A+B)=P(A)+P(B)-P(AB).  A1, A2,…, An xung khắc từng đôi  P(A1+A2+…+An)=P(A1)+P(A2)+…+P(An).  Ta có o A, B xung khắc  P(A+B)=P(A)+P(B). o A, B, C xung khắc từng đôi  P(A+B+C)=P(A)+P(B)+P(C). o P ( A)  1  P( A) . P( AB) P( AB)  Công thức xác suất có điều kiện: P( A / B)  , P( B / A)  . P( B) P( A)  Công thức nhân xác suất: P(AB)=P(A).P(B/A)=P(B).P(A/B).  A1, A2,…, An độc lập với nhau  P(A1.A2.….An)=P(A1).P(A2).….P( An).  Ta có o A, B độc lập  P(AB)=P(A).P(B). o A, B, C độc lập với nhau  P(A.B.C)=P(A).P(B).P(C).  Công thức Bernoulli: B(k ; n; p)  Cn p k q nk , với p=P(A): xác suất để biến cố A k xảy ra ở mỗi phép thử và q=1-p.  Công thức xác suất đầy đủ - Công thức Bayes o Hệ biến cố gồm n phần tử A1, A2,…, An được gọi là một phép phân  A . A  i  j;i, j 1, n  hoạch của    i j  A1  A2  ...  An    o Công thức xác suất đầy đủ: n P ( B )   P ( Ai ).P ( B / Ai ) P ( A1 ).P ( B / A1 )  P ( A2 ).P ( B / A2 )  ...  P( An ).P( B / An ) i 1 o Công thức Bayes: P( Ai ).P( B / Ai ) P( Ai / B)  P( B) với P ( B )  P ( A1 ).P ( B / A1 )  P ( A2 ).P( B / A2 )  ...  P( An ).P( B / An ) 2. Biến ngẫu nhiên a. Biến ngẫu nhiên rời rạc  Luật phân phối xác suất X x1 x2 … xn P p1 p2 … pn với pi  P ( X  xi ), i  1, n. Ta có: n  pi  1 và P{a  f(X)  b}=  pi i 1 a f(xi b -1- XSTK -2- Tóm tắt công thức  Hàm phân phối xác suất FX ( x )  P ( X  x)   pi xi  x  Mode ModX  x0  p0  max{ pi : i  1, n}  Median   pi  0,5  P ( X  xe )  0, 5  x x MedX  xe   i e  P ( X  xe )  0,5   pi  0, 5  xi  xe  Kỳ vọng n EX   ( xi . pi ) x1. p1  x2 . p2  ...  xn . pn i 1 n E ( ( X ))   ( ( xi ). pi )  ( x1 ). p1   ( x2 ). p2  ...   ( xn ). pn i 1  Phương sai VarX  E ( X 2 )  ( EX )2 n với E ( X )   ( xi2 . pi ) x1 . p1  x2 . p2  ...  xn . pn 2 2 2 2 i 1b. Biến ngẫu nhiên liên tục.   f(x) là hàm mật độ xác suất của X   f ( x)dx  1 ,  b P{a  X  b}   f ( x).dx a  Hàm phân phối xác suất x FX ( x )  P ( X  x )    f (t )dt  Mode ModX  x0  Hàm mật độ xác suất f(x) của X đạt cực đại tại x0.  Median xe 1 1 MedX  xe  FX ( xe )    f ( x )dx  . 2  2  Kỳ vọng  EX   x. f ( x)dx .   E ( ( X ))    ( x). f ( x)dx  -2- XSTK -3- Tóm tắt công thức  Phương sai ...

Tài liệu được xem nhiều:

Tài liệu có liên quan: